The given sum is:
$$\sum_{r=1}^{\infty} \left(\frac{n}{\sqrt{n^4 + r^4}} - \frac{2nr^2}{(n^2 + r^2)\sqrt{n^4 + r^4}}\right)$$
Substitute \(r = \frac{r}{n}\) and simplify:
$$\sum_{r=1}^{\infty} \left(\frac{1}{n} \cdot \frac{1}{\sqrt{1 + \left(\frac{r}{n}\right)^4}} - \frac{2\left(\frac{r}{n}\right)^2}{\left(1 + \left(\frac{r}{n}\right)^2\right)\sqrt{1 + \left(\frac{r}{n}\right)^4}}\right)$$
In the limit as \(n \to \infty\), this becomes the integral:
$$\int_0^1 \frac{dx}{\sqrt{1 + x^4}} - \int_0^1 \frac{2x^2dx}{(1 + x^2)\sqrt{1 + x^4}}$$
Simplify:
$$\int_0^1 \frac{1 - x^2}{(1 + x^2)\sqrt{1 + x^4}} dx$$
Substitute \(x + \frac{1}{x} = t\), where \(1 - \frac{1}{x^2} dx = dt\). The integral becomes:
$$\int_{\sqrt{2}}^{\infty} \frac{dt}{t\sqrt{t^2 - 2}}$$
Now substitute \(t^2 - 2 = \alpha^2\), so \(tdt = \alpha d\alpha\). The integral becomes:
$$\int_0^{\infty} \frac{\alpha d\alpha}{(\alpha^2 + 2)\alpha} = \int_{\sqrt{2}}^{\infty} \frac{d\alpha}{\alpha^2 + 2}$$
This simplifies further using the inverse tangent:
$$\int_{\sqrt{2}}^{\infty} \frac{d\alpha}{\alpha^2 + 2} = \frac{1}{\sqrt{2}} \left[\tan^{-1} \frac{\alpha}{\sqrt{2}}\right]_{\sqrt{2}}^{\infty}$$
At the limits:
$$\frac{1}{\sqrt{2}} \left(\tan^{-1} \infty - \tan^{-1} 1\right) = \frac{1}{\sqrt{2}} \left(\frac{\pi}{2} - \frac{\pi}{4}\right)$$
Simplify:
$$= \frac{\pi}{4\sqrt{2}}$$
We are given \(\frac{\pi}{k}\), so:
$$K = 4\sqrt{2}$$
Thus:
$$K^2 = 32$$
Final Answer is 32
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: