We start with the given series:
\[ \sum \frac{1}{\sqrt{x^2 + r^2}} = \int \frac{2x^2}{(x^2 + r^2)\sqrt{1 + (x^2 + r^2)}} \]
Simplify the expression:
\[ \int \frac{dx}{\sqrt{1 + x^2}(1 + x^2)} = \int \frac{2x \, dx}{(1 + x^2)\sqrt{1 + x^2}} \]
Let’s use the substitution \( x = \tan \theta \):
\[ dx = \sec^2 \theta \, d\theta, \quad \sqrt{1 + x^2} = \sec \theta \]
Substituting these values, we get:
\[ \int \frac{\sec^2 \theta \, d\theta}{\sec^3 \theta} = \int \cos \theta \, d\theta \]
\[ = \sin \theta + C \]
Now reverting back to \( x \):
\[ \sin \theta = \frac{x}{\sqrt{1 + x^2}} \Rightarrow \int \frac{dx}{(x^2 + 1)\sqrt{1 + x^2}} = \frac{x}{\sqrt{1 + x^2}} + C \]
Next, apply the limits:
\[ \left[\tan^{-1}\left(\frac{x}{r}\right)\right]_0^\infty = \frac{\pi}{2r} \]
Thus,
\[ K = 4\sqrt{2}, \quad \text{and} \quad K^2 = 32 \]
The given sum is:
$$\sum_{r=1}^{\infty} \left(\frac{n}{\sqrt{n^4 + r^4}} - \frac{2nr^2}{(n^2 + r^2)\sqrt{n^4 + r^4}}\right)$$
Substitute \(r = \frac{r}{n}\) and simplify:
$$\sum_{r=1}^{\infty} \left(\frac{1}{n} \cdot \frac{1}{\sqrt{1 + \left(\frac{r}{n}\right)^4}} - \frac{2\left(\frac{r}{n}\right)^2}{\left(1 + \left(\frac{r}{n}\right)^2\right)\sqrt{1 + \left(\frac{r}{n}\right)^4}}\right)$$
In the limit as \(n \to \infty\), this becomes the integral:
$$\int_0^1 \frac{dx}{\sqrt{1 + x^4}} - \int_0^1 \frac{2x^2dx}{(1 + x^2)\sqrt{1 + x^4}}$$
Simplify:
$$\int_0^1 \frac{1 - x^2}{(1 + x^2)\sqrt{1 + x^4}} dx$$
Substitute \(x + \frac{1}{x} = t\), where \(1 - \frac{1}{x^2} dx = dt\). The integral becomes:
$$\int_{\sqrt{2}}^{\infty} \frac{dt}{t\sqrt{t^2 - 2}}$$
Now substitute \(t^2 - 2 = \alpha^2\), so \(tdt = \alpha d\alpha\). The integral becomes:
$$\int_0^{\infty} \frac{\alpha d\alpha}{(\alpha^2 + 2)\alpha} = \int_{\sqrt{2}}^{\infty} \frac{d\alpha}{\alpha^2 + 2}$$
This simplifies further using the inverse tangent:
$$\int_{\sqrt{2}}^{\infty} \frac{d\alpha}{\alpha^2 + 2} = \frac{1}{\sqrt{2}} \left[\tan^{-1} \frac{\alpha}{\sqrt{2}}\right]_{\sqrt{2}}^{\infty}$$
At the limits:
$$\frac{1}{\sqrt{2}} \left(\tan^{-1} \infty - \tan^{-1} 1\right) = \frac{1}{\sqrt{2}} \left(\frac{\pi}{2} - \frac{\pi}{4}\right)$$
Simplify:
$$= \frac{\pi}{4\sqrt{2}}$$
We are given \(\frac{\pi}{k}\), so:
$$K = 4\sqrt{2}$$
Thus:
$$K^2 = 32$$
Final Answer is 32
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 