Step 1: Simplify the inequality Using the trigonometric identity:
\[ \cos \theta \cos (60^\circ - \theta) \cos (60^\circ + \theta) = \frac{1}{4} \cos 3\theta, \] the inequality reduces to: \[ \left| \frac{1}{4} \cos 3\theta \right| \leq \frac{1}{8}. \]
Simplify further: \[ |\cos 3\theta| \leq \frac{1}{2}. \]
Step 2: Range of \(\cos 3\theta\) The inequality becomes: \[ -\frac{1}{2} \leq \cos 3\theta \leq \frac{1}{2}. \] The maximum value of \(\cos 3\theta\) within this range is \(\frac{1}{2}\). At this value: \[ \cos 3\theta = \frac{1}{2}. \]
Step 3: Solve for \(3\theta\) The general solution for \(\cos 3\theta = \frac{1}{2}\) is: \[ 3\theta = 2n\pi \pm \frac{\pi}{3}, \quad n \in \mathbb{Z}. \] Divide through by 3 to solve for \(\theta\): \[ \theta = \frac{2n\pi}{3} \pm \frac{\pi}{9}. \]
Step 4: Possible values of \(\theta\) in \([0, 2\pi]\) For \(\theta \in [0, 2\pi]\), substitute \(n = 0, 1, 2, \dots\) until all possible values of \(\theta\) are found.
Thus, the possible values of \(\theta\) are: \[ \theta = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}, \frac{11\pi}{9}, \frac{13\pi}{9}, \frac{17\pi}{9}. \]
Step 5: Sum of all \(\theta\) The sum of these values is: \[ \text{Sum} = \frac{\pi}{9} + \frac{5\pi}{9} + \frac{7\pi}{9} + \frac{11\pi}{9} + \frac{13\pi}{9} + \frac{17\pi}{9}. \] \[ \text{Sum} = \frac{\pi (1 + 5 + 7 + 11 + 13 + 17)}{9} = \frac{\pi \cdot 54}{9} = 6\pi. \]
Final Answer: Option (3).
The given graph illustrates:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: