Step 1: Condition for infinitely many solutions For the system of equations to have infinitely many solutions, the three equations must be linearly dependent.
Step 2: Manipulate the equations The given equations are:
\[ 3x + 5y + \lambda z = 3, \cdots \cdots(1)\] \[ 7x + 11y - 9z = 2, \cdots \cdots(2) \] \[ 97x + 155y - 189z = \mu. \cdots \cdots(3) \]
Multiply equation (1) by 31:
\[ 93x + 155y + 31\lambda z = 93. \cdots \cdots(4)\]
Subtract equation (4) from equation (3):
\[ (97x + 155y - 189z) - (93x + 155y + 31\lambda z) = \mu - 93. \] \[ 4x - (31\lambda + 189)z = \mu - 93. \cdots \cdots(5) \]
Step 3: Express further conditions Now consider equations (2) and (5). Multiply equation (2) by 9:
\[ 63x + 99y - 81z = 18. \cdots \cdots({6}) \]
Multiply equation (5) by 9 and subtract from equation (6):
\[ (63x + 99y - 81z) - 9(4x - (31\lambda + 189)z) = 18 - 9(\mu - 93). \] \[ 63x + 99y - 81z - 36x + 9(31\lambda + 189)z = 18 - 9\mu + 837. \] \[ 36x + 1368z = 2(310 - 11\mu). \cdots \cdots({7}) \]
Step 4: Solve for λ and μ Expand equation (7):
\[ 279\lambda + 3069z = 1457 - 31\mu. \cdots \cdots({8}) \]
For infinitely many solutions:
\[ 279\lambda + 3069 = 0 \quad \Rightarrow \quad \lambda = -\frac{3069}{279} = -\frac{341}{31}. \]
Substitute \(\lambda = -\frac{341}{31}\) into the original equations to find \(\mu\):
\[ \mu = \frac{1457}{31}. \]
Step 5: Calculate \(\mu + 2\lambda\)
\[ \mu + 2\lambda = \frac{1457}{31} + 2\left(-\frac{341}{31}\right). \] \[ \mu + 2\lambda = \frac{1457 - 682}{31} = \frac{775}{31} = 25. \]
Final Answer: Option (1).
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: