Question:

Let \( \lambda, \mu \in \mathbb{R} \). If the system of equations
\( 3x + 5y + \lambda z = 3 \) 
\( 7x + 11y - 9z = 2 \) 
\( 97x + 155y - 189z = \mu \) 
has infinitely many solutions, then \( \mu + 2\lambda \) is equal to:

Updated On: Nov 23, 2024
  • 25
  • 24
  • 27
  • 22
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Condition for infinitely many solutions For the system of equations to have infinitely many solutions, the three equations must be linearly dependent.

Step 2: Manipulate the equations The given equations are:

\[ 3x + 5y + \lambda z = 3,       \cdots \cdots(1)\] \[ 7x + 11y - 9z = 2,        \cdots \cdots(2) \] \[ 97x + 155y - 189z = \mu.       \cdots \cdots(3) \]

Multiply equation (1) by 31:

\[ 93x + 155y + 31\lambda z = 93.        \cdots \cdots(4)\]

Subtract equation (4) from equation (3):

\[ (97x + 155y - 189z) - (93x + 155y + 31\lambda z) = \mu - 93. \] \[ 4x - (31\lambda + 189)z = \mu - 93.        \cdots \cdots(5) \]

Step 3: Express further conditions Now consider equations (2) and (5). Multiply equation (2) by 9:

\[ 63x + 99y - 81z = 18.        \cdots \cdots({6}) \]

Multiply equation (5) by 9 and subtract from equation (6):

\[ (63x + 99y - 81z) - 9(4x - (31\lambda + 189)z) = 18 - 9(\mu - 93). \] \[ 63x + 99y - 81z - 36x + 9(31\lambda + 189)z = 18 - 9\mu + 837. \] \[ 36x + 1368z = 2(310 - 11\mu).        \cdots \cdots({7}) \]

Step 4: Solve for λ and μ Expand equation (7):

\[ 279\lambda + 3069z = 1457 - 31\mu.        \cdots \cdots({8}) \]

For infinitely many solutions:

\[ 279\lambda + 3069 = 0 \quad \Rightarrow \quad \lambda = -\frac{3069}{279} = -\frac{341}{31}. \]

Substitute \(\lambda = -\frac{341}{31}\) into the original equations to find \(\mu\):

\[ \mu = \frac{1457}{31}. \]

Step 5: Calculate \(\mu + 2\lambda\)

\[ \mu + 2\lambda = \frac{1457}{31} + 2\left(-\frac{341}{31}\right). \] \[ \mu + 2\lambda = \frac{1457 - 682}{31} = \frac{775}{31} = 25. \]

Final Answer: Option (1).

Was this answer helpful?
0
0