Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2 }. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
R = {(L1, L2): L1 is parallel to L2 }
R is reflexive as any line L1 is parallel to itself i.e., (L1, L1 ) ∈ R.
Now,
Let (L1, L2 ) ∈ R.
⇒ L1 is parallel to L2.
⇒ L2 is parallel to L1.
⇒ (L2, L1 ) ∈ R
∴ R is symmetric.
Now,
Let (L1, L2 ), (L2, L3 ) ∈R.
⇒ L1 is parallel to L2. Also, L2 is parallel to L3.
⇒ L1 is parallel to L3.
∴R is transitive.
Hence, R is an equivalence relation.
The set of all lines related to the line y = 2x + 4 is the set of all lines that are parallel to
the line y = 2x + 4.
Slope of line y = 2x + 4 is m = 2
It is known that parallel lines have the same slopes.
The line parallel to the given line is of the form y = 2x + c, where c ∈R.
Hence, the set of all lines related to the given line is given by y = 2x + c, where c ∈ R.
LIST I | LIST II | ||
A. | Range of y=cosec-1x | I. | R-(-1, 1) |
B. | Domain of sec-1x | II. | (0, π) |
C. | Domain of sin-1x | III. | [-1, 1] |
D. | Range of y=cot-1x | IV. | \([\frac{-π}{2},\frac{π}{2}]\)-{0} |
What is the Planning Process?
Relation is said to be empty relation if no element of set X is related or mapped to any element of X i.e, R = Φ.
A relation R in a set, say A is a universal relation if each element of A is related to every element of A.
R = A × A.
Every element of set A is related to itself only then the relation is identity relation.
Let R be a relation from set A to set B i.e., R ∈ A × B. The relation R-1 is said to be an Inverse relation if R-1 from set B to A is denoted by R-1
If every element of set A maps to itself, the relation is Reflexive Relation. For every a ∈ A, (a, a) ∈ R.
A relation R is said to be symmetric if (a, b) ∈ R then (b, a) ∈ R, for all a & b ∈ A.
A relation is said to be transitive if, (a, b) ∈ R, (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A
A relation is said to be equivalence if and only if it is Reflexive, Symmetric, and Transitive.