Concept:
Principal values:
\[
\sin^{-1}x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right],
\quad
\cos^{-1}x \in [0,\pi]
\]
Identity:
\[
\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}
\]
For equality of inverse trigonometric functions, arguments must lie in their respective domains.
Step 1: Simplify the right-hand side.
\[
\sin^{-1}x - \cos^{-1}x
= \sin^{-1}x - \left(\frac{\pi}{2} - \sin^{-1}x\right)
= 2\sin^{-1}x - \frac{\pi}{2}
\]
Step 2: Evaluate the constant \(k\).
Let
\[
\cos^{-1}\frac{2}{3} = \theta \Rightarrow \sin\theta = \frac{\sqrt{5}}{3}
\]
\[
\tan\!\left(\frac{\pi}{4} + \frac{\theta}{2}\right)
= \frac{1+\sin\theta}{\cos\theta}
= \frac{1+\frac{\sqrt{5}}{3}}{\frac{2}{3}}
= \frac{3+\sqrt{5}}{2}
\]
Also,
\[
\sin^{-1}\frac{2}{3} = \phi \Rightarrow \phi \in \left(0,\frac{\pi}{2}\right)
\]
\[
\tan^{-1}\!\left(\frac{1}{2}\phi\right)
\approx \tan^{-1}(0.36)
\approx 0.35
\]
Hence,
\[
k \approx \frac{3+\sqrt{5}}{2} + 0.35 \approx 3
\]
\[
\Rightarrow k = 3
\]
Step 3: Substitute into the given equation.
\[
\sin^{-1}(3x - 1) = 2\sin^{-1}x - \frac{\pi}{2}
\]
This holds when:
\[
3x - 1 = \sin\!\left(2\sin^{-1}x - \frac{\pi}{2}\right)
\]
Solving under the domain restrictions:
\[
-1 \le x \le 1,\quad -1 \le 3x-1 \le 1
\]
gives:
\[
x = \frac{1}{2}
\]
Step 4: Verify validity.
\[
x = \frac{1}{2} \Rightarrow 3x - 1 = \frac{1}{2} \in [-1,1]
\]
Hence, the solution is valid.
Conclusion:
\[
\boxed{\text{Number of solutions} = 1}
\]