Let \(I(x)=\int\frac{x+1}{x(1+xe^x)^2} dx\), x>0. If \(\lim\limits_{x\rightarrow\infin}I(x)=0\), then I(1) is equal to
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.