Step 1: Let the matrix be
\[
A = \begin{bmatrix}
-a & b \\
b & a
\end{bmatrix}
\]
Step 2: Find the characteristic equation
\[
\det(A - \lambda I) = 0 \Rightarrow
\begin{vmatrix}
-a - \lambda & b \\
b & a - \lambda
\end{vmatrix} = 0
\]
\[
(-a - \lambda)(a - \lambda) - b^2 = 0
\]
\[
= -a^2 + a\lambda - a\lambda + \lambda^2 - b^2
= \lambda^2 - (a^2 + b^2)
\]
Step 3: Use the identity \( a^2 + b^2 = 1 \)
\[
\lambda^2 - 1 = 0 \Rightarrow \lambda = \pm 1
\]
Step 4: Conclusion
So, the eigenvalues are \( \boxed{1 \text{ and } -1} \).