Step 1: Use the Cayley-Hamilton Theorem.
The matrix \( A \) satisfies its own characteristic equation. First, we compute the characteristic polynomial of \( A \).
\[
A = \begin{pmatrix} -3 & 2 \\ 1 & 0 \end{pmatrix}
\]
Step 2: Characteristic Polynomial
\[
\det(A - \lambda I) =
\begin{vmatrix}
-3 - \lambda & 2 \\
1 & -\lambda
\end{vmatrix}
= (-3 - \lambda)(-\lambda) - (2)(1)
= \lambda(3 + \lambda) - 2 = \lambda^2 + 3\lambda - 2
\]
So the characteristic equation is:
\[
\lambda^2 + 3\lambda - 2 = 0
\]
Step 3: Cayley-Hamilton Theorem
According to the Cayley-Hamilton theorem, the matrix \( A \) satisfies:
\[
A^2 + 3A - 2I = 0 \quad \text{(Equation 1)}
\]
Step 4: Multiply Equation (1) by \( A \)
\[
A(A^2 + 3A - 2I) = 0 \Rightarrow A^3 + 3A^2 - 2A = 0
\]
Step 5: Conclusion
Therefore, the correct relation is:
\[
\boxed{A^3 + 3A^2 - 2A = 0}
\]