Question:

Let H: \(\R\rightarrow\R\) be the function given by H(x) = \(\frac{1}{2}(e^x+e^{-x})\) for \(x\isin\R\).
Let f: \(\R\rightarrow\R\) be defined by
\(f(x)=\displaystyle\int_{0}^{\pi}H(xsin\theta)d\theta\) for \(x\isin\R\)
Then which one of the following is true?

Updated On: Oct 1, 2024
  • xf"(x) + f'(x) +xf(x) = 0 for all \(x\isin\R\).
  • xf"(x) + f'(x) +xf(x) = 0 for all \(x\isin\R\).
  • xf"(x) + f'(x) +xf(x) = 0 for all \(x\isin\R\).
  • xf"(x) + f'(x) +xf(x) = 0 for all \(x\isin\R\).
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The correct option is (C): xf"(x) + f'(x) +xf(x) = 0 for all \(x\isin\R\).
Was this answer helpful?
0
0

Top Questions on Integral Calculus

View More Questions