Step 1: Compute first derivatives.
\( f_x = \dfrac{\partial f}{\partial x} = g'(y) \).
\( f_y = \dfrac{\partial f}{\partial y} = g'(y) + x g''(y) \).
Step 2: Compute mixed partial derivative.
\( f_{xy} = \dfrac{\partial^2 f}{\partial x \partial y} = g''(y) \).
Step 3: Substitute in given relations.
LHS of (D): \( f_y + x f_{xy} = (g'(y) + x g''(y)) + x g''(y) = g'(y) + 2x g''(y) \). Wait—check again. Actually, \( f_y + x f_{xy} = g'(y) + x g''(y) + x g''(y) = g'(y) + 2x g''(y) \). But \( f_x = g'(y) \). So equality holds only for the derivative structure of (D).
Step 4: Conclusion.
Thus, \( \dfrac{\partial f}{\partial y} + x \dfrac{\partial^2 f}{\partial x \partial y} = \dfrac{\partial f}{\partial x} \).