Question:

Define the function \(f: \R^2 → \R\) by
f(x, y) = 12xy e-(2x+3y-2).
If (a, b) is the point of local maximum of f, then f(a, b) equals

Updated On: Jan 25, 2025
  • 2
  • 6
  • 12
  • 0
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To find the point \( (a, b) \) of local maximum, we need to calculate the critical points by finding the partial derivatives of \( f(x, y) \) with respect to \( x \) and \( y \), and setting them equal to zero. 
1. First, calculate the partial derivatives: \[ \frac{\partial f}{\partial x} = 12y e^{-(2x + 3y - 2)} - 24xy e^{-(2x + 3y - 2)} = 12y e^{-(2x + 3y - 2)} (1 - 2x) \] \[ \frac{\partial f}{\partial y} = 12x e^{-(2x + 3y - 2)} - 36xy e^{-(2x + 3y - 2)} = 12x e^{-(2x + 3y - 2)} (1 - 3y) \] 2. Set these partial derivatives equal to zero to find the critical points: From \( \frac{\partial f}{\partial x} = 0 \), we get: \[ y = 0 \quad \text{or} \quad 1 - 2x = 0 \quad \Rightarrow \quad x = \frac{1}{2}. \] From \( \frac{\partial f}{\partial y} = 0 \), we get: \[ x = 0 \quad \text{or} \quad 1 - 3y = 0 \quad \Rightarrow \quad y = \frac{1}{3}. \] Thus, the critical point occurs at \( (x, y) = \left( \frac{1}{2}, \frac{1}{3} \right) \). 3. Evaluate \( f(a, b) \) at this critical point: Substitute \( x = \frac{1}{2} \) and \( y = \frac{1}{3} \) into the function \( f(x, y) \): \[ f\left( \frac{1}{2}, \frac{1}{3} \right) = 12 \times \frac{1}{2} \times \frac{1}{3} \times e^{-(2 \times \frac{1}{2} + 3 \times \frac{1}{3} - 2)} = 2 \times e^{-(1 + 1 - 2)} = 2 \times e^0 = 2. \] Thus, the correct answer is (A): 2.

Was this answer helpful?
0
1

Top Questions on Functions of Two or Three Real Variables

View More Questions