$\overrightarrow{CB} = \overrightarrow{AB} + \overrightarrow{CA} = (-2+4)\hat{i} + (1+3)\hat{j} + (3+\delta)\hat{k} = 2\hat{i} + 4\hat{j} + (3+\delta)\hat{k}$ \item $\overrightarrow{CB} \times \overrightarrow{CA} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 2 & 4 & 3+\delta 4 & 3 & \delta \end{vmatrix} = (\delta-9)\hat{i} + (12+2\delta)\hat{j} - 10\hat{k}$
$|\overrightarrow{CB} \times \overrightarrow{CA}| = \sqrt{(\delta-9)^2 + (12+2\delta)^2 + 100}$
Area = $\frac{1}{2}|\overrightarrow{CB} \times \overrightarrow{CA}| = 5\sqrt{6}$
$|\overrightarrow{CB} \times \overrightarrow{CA}| = 10\sqrt{6}$
$\sqrt{(\delta-9)^2 + (12+2\delta)^2 + 100} = 10\sqrt{6}$
$(\delta-9)^2 + (12+2\delta)^2 + 100 = 600$
$\delta^2 - 18\delta + 81 + 4\delta^2 + 48\delta + 144 + 100 = 600$
$5\delta^2 + 30\delta + 325 = 600$ \item $5\delta^2 + 30\delta - 275 = 0$
$\delta^2 + 6\delta - 55 = 0$
$(\delta+11)(\delta-5) = 0$
$\delta = 5$ (since $\delta > 0$)
$\overrightarrow{CB} = 2\hat{i} + 4\hat{j} + 8\hat{k}$
$\overrightarrow{CB} \cdot \overrightarrow{CA} = (2)(4) + (4)(3) + (8)(5) = 8 + 12 + 40 = 60$
Answer: $\overrightarrow{CB} \cdot \overrightarrow{CA} = 60$
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: