To evaluate the limit \( \lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x} \), we begin by simplifying the expression using rationalization. The conjugate of \( \sqrt{1 + x} - \sqrt{1 - x} \) is \( \sqrt{1 + x} + \sqrt{1 - x} \).
Multiply the numerator and the denominator by the conjugate:
$$\frac{\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(\sqrt{1+x}+\sqrt{1-x}\right)}{x\left(\sqrt{1+x}+\sqrt{1-x}\right)}$$
This simplifies the numerator using the difference of squares:
$$=\frac{(1+x)-(1-x)}{x(\sqrt{1+x}+\sqrt{1-x})}$$
$$=\frac{2x}{x(\sqrt{1+x}+\sqrt{1-x})}$$
We can cancel \( x \) in the numerator and denominator (assuming \( x\neq0 \)):
$$=\frac{2}{\sqrt{1+x}+\sqrt{1-x}}$$
Now compute the limit as \( x \to 0 \):
$$\lim_{x \to 0} \frac{2}{\sqrt{1+x}+\sqrt{1-x}}=\frac{2}{\sqrt{1+0}+\sqrt{1-0}}=\frac{2}{1+1}=\frac{2}{2}=1$$
Therefore, the correct answer is 1.