Step 1: Compute the gradient.
\[
\nabla f = (3x^2 - 3yz, 3y^2 - 3xz, 3z^2 - 3xy).
\]
Step 2: Set each component equal to zero.
\[
3x^2 - 3yz = 0, 3y^2 - 3xz = 0, 3z^2 - 3xy = 0.
\]
Simplify:
\[
x^2 = yz, y^2 = xz, z^2 = xy.
\]
Step 3: Analyze possible solutions.
If \( x = y = z \), all equations hold trivially. So possible points are \( (1, 1, 1) \) and \( (-1, -1, -1). \)
Step 4: Check sign consistency.
Substitute \( (-1, -1, -1) \):
\[
x^2 = 1 = yz = (-1)(-1) = 1.
\]
All equations hold.
Final Answer: \((-1, -1, -1)\).