We are given that: \[ f(x) = x + \int_0^{\frac{\pi}{2}} \sin(x + y) f(y) \, dy. \] Step 1: Expanding the equation.
First, rewrite the given function \( f(x) \) as: \[ f(x) = x + \int_0^{\frac{\pi}{2}} (\cos y \sin(x) + \sin y \cos(x)) f(y) \, dy. \] This can be rewritten as: \[ f(x) = x + \left( \int_0^{\frac{\pi}{2}} \cos y f(y) \, dy \right) \sin(x) + \left( \int_0^{\frac{\pi}{2}} \sin y f(y) \, dy \right) \cos(x). \] Comparing this with the original form of \( f(x) \), which is: \[ f(x) = x + \frac{a}{\frac{\pi^2}{4}} \sin x + \frac{b}{\frac{\pi^2}{4}} \cos x, \] we obtain the following relationships: \[ \frac{a}{\frac{\pi^2}{4}} = \int_0^{\frac{\pi}{2}} \cos y f(y) \, dy, \quad \frac{b}{\frac{\pi^2}{4}} = \int_0^{\frac{\pi}{2}} \sin y f(y) \, dy. \] This leads to: \[ a = \frac{\pi^2}{4} \int_0^{\frac{\pi}{2}} \cos y f(y) \, dy, \quad b = \frac{\pi^2}{4} \int_0^{\frac{\pi}{2}} \sin y f(y) \, dy. \quad \cdots (1) \] Step 2: Solving for the value of \( a + b \). Add equations (1) for \( a \) and \( b \): \[ a + b = \frac{\pi^2}{4} \left( \int_0^{\frac{\pi}{2}} \cos y f(y) \, dy + \int_0^{\frac{\pi}{2}} \sin y f(y) \, dy \right). \] This simplifies to: \[ a + b = \frac{\pi^2}{4} \int_0^{\frac{\pi}{2}} (\cos y + \sin y) f(y) \, dy. \] Step 3: Substituting the values and simplifying. Using the identity for \( f(y) \), we integrate to get the final value: \[ a + b = -2\pi (\pi + 2). \] Thus, the correct value of \( (a + b) \) is \( -2\pi (\pi + 2) \), and the correct answer is option (3).
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: