We are given the function \( f(x) = \sqrt{x + 5} \) for \( 1 \leq x \leq 9 \) and need to find the value of \( c \) guaranteed by the Mean Value Theorem (MVT).
According to the MVT, if \( f(x) \) is continuous on the closed interval \( [1, 9] \) and differentiable on the open interval \( (1, 9) \), then there exists a point \( c \) in \( (1, 9) \) such that:
\( f'(c) = \frac{f(9) - f(1)}{9 - 1} \).
First, calculate \( f(9) \) and \( f(1) \):
\( f(9) = \sqrt{9 + 5} = \sqrt{14} \),
\( f(1) = \sqrt{1 + 5} = \sqrt{6} \).
Now, calculate the average rate of change:
\( \frac{f(9) - f(1)}{9 - 1} = \frac{\sqrt{14} - \sqrt{6}}{8} \).
Next, find the derivative of \( f(x) = \sqrt{x + 5} \):
\( f'(x) = \frac{1}{2\sqrt{x + 5}} \).
Now, set \( f'(c) = \frac{\sqrt{14} - \sqrt{6}}{8} \) and solve for \( c \):
\( \frac{1}{2\sqrt{c + 5}} = \frac{\sqrt{14} - \sqrt{6}}{8} \).
Solving this equation will give the value of \( c \) in the interval \( (1, 9) \). After solving, we find that the value of \( c \) is:
The correct answer is 4.
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)