We are given the function:
\[
f(x) = x^3 - \dfrac{9}{2} x^2 + 6x - 2
\]
and we need to find the global maximum value of $f(x)$ on the interval $[0, 3]$.
1. First, find the first derivative $f'(x)$ to determine the critical points:
\[
f'(x) = 3x^2 - 9x + 6
\]
2. Set $f'(x) = 0$ to find the critical points:
\[
3x^2 - 9x + 6 = 0
\]
Divide the equation by 3:
\[
x^2 - 3x + 2 = 0
\]
Factor the quadratic equation:
\[
(x - 1)(x - 2) = 0
\]
So, $x = 1$ and $x = 2$ are the critical points.
3. Evaluate $f(x)$ at the critical points and the endpoints of the interval:
- At $x = 0$:
\[
f(0) = 0^3 - \dfrac{9}{2} \times 0^2 + 6 \times 0 - 2 = -2
\]
- At $x = 3$:
\[
f(3) = 3^3 - \dfrac{9}{2} \times 3^2 + 6 \times 3 - 2 = 27 - \dfrac{9}{2} \times 9 + 18 - 2 = 27 - 40.5 + 18 - 2 = 2.5
\]
- At $x = 1$:
\[
f(1) = 1^3 - \dfrac{9}{2} \times 1^2 + 6 \times 1 - 2 = 1 - \dfrac{9}{2} + 6 - 2 = 1 - 4.5 + 6 - 2 = 0.5
\]
- At $x = 2$:
\[
f(2) = 2^3 - \dfrac{9}{2} \times 2^2 + 6 \times 2 - 2 = 8 - \dfrac{9}{2} \times 4 + 12 - 2 = 8 - 18 + 12 - 2 = 0
\]
4. The global maximum value occurs at $x = 3$, and the corresponding value of $f(x)$ is $2.5$.
Thus, the global maximum value of $f(x)$ is $2.5$.