To solve the line integral, we use Green's Theorem, which relates a line integral over a closed curve $C$ to a double integral over the region $R$ enclosed by $C$:
\[
\int_C (P \, dx + Q \, dy) = \iint_R \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA
\]
where $P(x, y) = 3x^2 - 8y^2$ and $Q(x, y) = 4y - 6xy$.
1. First, compute the partial derivatives:
\[
\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}(4y - 6xy) = -6y
\]
\[
\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}(3x^2 - 8y^2) = -16y
\]
2. Now, apply Green's Theorem:
\[
\int_C \left( (3x^2 - 8y^2) \, dx + (4y - 6xy) \, dy \right) = \iint_R \left( -6y - (-16y) \right) \, dA
\]
\[
= \iint_R 10y \, dA
\]
3. The region $R$ is enclosed by the curves $y = \sqrt{x}$ and $y = x^2$. We set up the limits for the double integral:
- $x$ varies from 0 to 1 (the points where the curves intersect).
- For each $x$, $y$ varies from $x^2$ to $\sqrt{x}$.
Thus, the double integral becomes:
\[
\int_0^1 \int_{x^2}^{\sqrt{x}} 10y \, dy \, dx
\]
4. Solve the inner integral:
\[
\int_{x^2}^{\sqrt{x}} 10y \, dy = 10 \left[ \frac{y^2}{2} \right]_{x^2}^{\sqrt{x}} = 10 \left( \frac{x}{2} - \frac{x^4}{2} \right) = 5(x - x^4)
\]
5. Now, solve the outer integral:
\[
\int_0^1 5(x - x^4) \, dx = 5 \left( \int_0^1 x \, dx - \int_0^1 x^4 \, dx \right)
\]
\[
= 5 \left( \frac{1}{2} - \frac{1}{5} \right) = 5 \times \frac{3}{10} = \frac{15}{10} = \frac{3}{2}
\]
Thus, the value of the line integral is $\dfrac{3}{2}$.