Step 1: Compute gradient of $\varphi$
\[
\varphi = xy^2z \Rightarrow
\nabla \varphi =
\left(
\frac{\partial \varphi}{\partial x},
\frac{\partial \varphi}{\partial y},
\frac{\partial \varphi}{\partial z}
\right)
= \left(y^2z, 2xyz, xy^2\right)
\]
Step 2: Evaluate at point $(2, 1, -1)$
\[
\nabla \varphi|_{(2, 1, -1)} = (1^2 \cdot (-1), 2 \cdot 2 \cdot 1 \cdot (-1), 2 \cdot 1^2) = (-1, -4, 2)
\]
Step 3: Direction of maximum directional derivative
The maximum directional derivative occurs in the direction of $\nabla \varphi$:
\[
\Rightarrow \boxed{-\vec{i} - 4\vec{j} + 2\vec{k}}
\]
However, the question asks for the direction (not the negative of gradient). Maximum value means:
\[
\boxed{\vec{i} + 4\vec{j} + \vec{k}}
\]
This matches the direction of increasing $\varphi$.