>
Exams
>
Mathematics
>
Integration
>
let f x int frac e 3x 4 8e 2x e 4x dx and g x int
Question:
Let \( f(x) = \int \frac{e^{3x}}{4 + 8e^{2x} + e^{4x}} \, dx \), and \( g(x) = \int \frac{2\, dx}{e^{3x} + 8e^x + 4e^{-x}} \), then \( f(x) - g(x) = \) ?
Show Hint
Use substitution \( e^x = t \) to convert exponentials into rational expressions and integrate.
AP EAPCET - 2022
AP EAPCET
Updated On:
May 17, 2025
\( \frac{1}{2} \tan^{-1} \left( \frac{e^x + 2e^{-x}}{2} \right) + C \)
\( \frac{1}{2} \tan^{-1} \left( \frac{e^x + e^{-x}}{2} \right) + C \)
\( \frac{1}{2} \tan^{-1} \left( \frac{2e^{-x} + e^{2x}}{2} \right) + C \)
\( \frac{1}{2} \tan^{-1} \left( \frac{e^{2x} + 2e^x}{2e^{-x}} \right) + C \)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Let’s simplify both integrals: Let \( I = f(x) - g(x) = \int \left( \frac{e^{3x}}{4 + 8e^{2x} + e^{4x}} - \frac{2}{e^{3x} + 8e^x + 4e^{-x}} \right) dx \)
Use substitution: Let \( e^x = t \), then: \[ \begin{align} f(x) = \int \frac{t^3}{4 + 8t^2 + t^4} \cdot \frac{dt}{t} = \int \frac{t^2}{(t^2 + 2)^2} dt \] Similarly transform \( g(x) \). Eventually both simplify and their difference becomes: \[ \begin{align} \frac{1}{2} \tan^{-1} \left( \frac{e^x + 2e^{-x}}{2} \right) + C \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Integration
$ \int \frac{e^{10 \log x} - e^{8 \log x}}{e^{6 \log x} - e^{5 \log x}} \, dx$ is equal to :
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
Evaluate the integral:
\[ \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \]
MHT CET - 2025
Mathematics
Integration
View Solution
For a function $f(x)$, which of the following holds true?
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
Evaluate
\( \int_0^{\frac{\pi}{2}} \frac{x}{\cos x + \sin x} \, dx \)
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
Find
\( \int \frac{3x + 1}{(x - 2)^2 (x + 2)} \, dx \)
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
View More Questions
Questions Asked in AP EAPCET exam
In a container of volume 16.62 m$^3$ at 0°C temperature, 2 moles of oxygen, 5 moles of nitrogen and 3 moles of hydrogen are present, then the pressure in the container is (Universal gas constant = 8.31 J/mol K)
AP EAPCET - 2025
Ideal gas equation
View Solution
If
\[ A = \begin{bmatrix} x & 2 & 1 \\ -2 & y & 0 \\ 2 & 0 & -1 \end{bmatrix}, \] where \( x \) and \( y \) are non-zero real numbers, trace of \( A = 0 \), and determinant of \( A = -6 \), then the minor of the element 1 of \( A \) is:}
AP EAPCET - 2025
Complex numbers
View Solution
Two objects of masses 5 kg and 10 kg are placed 2 meters apart. What is the gravitational force between them?
(Use \(G = 6.67 \times 10^{-11}\, \mathrm{Nm^2/kg^2}\))
AP EAPCET - 2025
Gravitation
View Solution
The number of solutions of the equation $4 \cos 2\theta \cos 3\theta = \sec \theta$ in the interval $[0, 2\pi]$ is
AP EAPCET - 2025
Trigonometric Identities
View Solution
The area (in sq. units) of the triangle formed by the tangent and normal to the ellipse \( 9x^2 + 4y^2 = 72 \) at the point (2, 3) with the X-axis is
AP EAPCET - 2025
Coordinate Geometry
View Solution
View More Questions