Applying column operations: \[ C_1 \to C_1 + C_2 + C_3 \]
\[f(x) = \begin{bmatrix} 2 + \sin 2x & \cos^2 x & \sin 2x \\ 2 + \sin 2x & 1 + \cos^2 x & \sin 2x \\ 2 + \sin 2x & \cos^2 x & 1 + \sin 2x \end{bmatrix}\]Subtracting rows: \[ R_2 \to R_2 - R_1, \quad R_3 \to R_3 - R_1 \]
\[f(x) = (2 + \sin 2x) \begin{bmatrix} 1 & \cos^2 x & \sin 2x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\]\[ = (2 + \sin 2x) (1) \] \[ = 2 + \sin 2x \] For given range \( x \in \left[ \frac{\pi}{6}, \frac{\pi}{3} \right] \): \[ \sin 2x \in \left[ \frac{\sqrt{3}}{2}, 1 \right] \] Thus, \[ 2 + \sin 2x \in \left[ 2 + \frac{\sqrt{3}}{2}, 3 \right] \] \[ \alpha = 3, \quad \beta = 2 + \frac{\sqrt{3}}{2} \] \[ \beta^2 - 2\sqrt{\alpha} = \frac{19}{4} \]
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
The representation of the area of a region under a curve is called to be as integral. The actual value of an integral can be acquired (approximately) by drawing rectangles.
Also, F(x) is known to be a Newton-Leibnitz integral or antiderivative or primitive of a function f(x) on an interval I.
F'(x) = f(x)
For every value of x = I.
Integral calculus helps to resolve two major types of problems: