Applying column operations: \[ C_1 \to C_1 + C_2 + C_3 \]
\[f(x) = \begin{bmatrix} 2 + \sin 2x & \cos^2 x & \sin 2x \\ 2 + \sin 2x & 1 + \cos^2 x & \sin 2x \\ 2 + \sin 2x & \cos^2 x & 1 + \sin 2x \end{bmatrix}\]Subtracting rows: \[ R_2 \to R_2 - R_1, \quad R_3 \to R_3 - R_1 \]
\[f(x) = (2 + \sin 2x) \begin{bmatrix} 1 & \cos^2 x & \sin 2x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\]\[ = (2 + \sin 2x) (1) \] \[ = 2 + \sin 2x \] For given range \( x \in \left[ \frac{\pi}{6}, \frac{\pi}{3} \right] \): \[ \sin 2x \in \left[ \frac{\sqrt{3}}{2}, 1 \right] \] Thus, \[ 2 + \sin 2x \in \left[ 2 + \frac{\sqrt{3}}{2}, 3 \right] \] \[ \alpha = 3, \quad \beta = 2 + \frac{\sqrt{3}}{2} \] \[ \beta^2 - 2\sqrt{\alpha} = \frac{19}{4} \]
The representation of the area of a region under a curve is called to be as integral. The actual value of an integral can be acquired (approximately) by drawing rectangles.
Also, F(x) is known to be a Newton-Leibnitz integral or antiderivative or primitive of a function f(x) on an interval I.
F'(x) = f(x)
For every value of x = I.
Integral calculus helps to resolve two major types of problems: