We are given:
\[
\lim_{x \to m} \frac{x f(m) - m f(x)}{x - m} + f'(m) = f(m)
\]
Split the limit:
\[
\frac{x f(m) - m f(x)}{x - m} = \frac{x f(m) - m f(m) + m f(m) - m f(x)}{x - m}
= \frac{(x - m) f(m)}{x - m} + m \cdot \frac{f(m) - f(x)}{x - m}
\]
So, the expression becomes:
\[
f(m) - m f'(m)
\]
Now, equating:
\[
f(m) - m f'(m) + f'(m) = f(m)
\Rightarrow -m f'(m) + f'(m) = 0
\Rightarrow f'(m)(1 - m) = 0
\]
Since \( f'(m) \ne 0 \), we must have:
\[
1 - m = 0 \Rightarrow m = 1
\]