For \(f(x) = 2^x - x^2 = 0\), we determine the values of \(x\) where this equation holds. This equation intersects the x-axis at three points, so \(m = 3\).
The derivative \(f'(x) = 2^x \ln 2 - 2x\). Setting \(f'(x) = 0\), we solve \(2^x \ln 2 = 2x\) to find the points where this equation intersects the x-axis. This yields two intersection points, so \(n = 2\).
\[ m + n = 3 + 2 = 5 \]
So, the correct answer is: 5
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to:
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).