Let \( A = \{1, 2, 3, 4, 5, 6, 7\} \). Then the relation \( R = \{(x, y) \in A \times A : x + y = 7\} \) is:
Symmetric but neither reflexive nor transitive
Transitive but neither symmetric nor reflexive
An equivalence relation
Reflexive but neither symmetric nor transitive
The relation \( R \) is defined as:
\[ R = \{(x, y) \in A \times A : x + y = 7\}. \]
By substitution, the pairs in \( R \) are:
\[ R = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}. \]
Thus, \( R \) is symmetric but neither reflexive nor transitive.
Relation is said to be empty relation if no element of set X is related or mapped to any element of X i.e, R = Φ.
A relation R in a set, say A is a universal relation if each element of A is related to every element of A.
R = A × A.
Every element of set A is related to itself only then the relation is identity relation.
Let R be a relation from set A to set B i.e., R ∈ A × B. The relation R-1 is said to be an Inverse relation if R-1 from set B to A is denoted by R-1
If every element of set A maps to itself, the relation is Reflexive Relation. For every a ∈ A, (a, a) ∈ R.
A relation R is said to be symmetric if (a, b) ∈ R then (b, a) ∈ R, for all a & b ∈ A.
A relation is said to be transitive if, (a, b) ∈ R, (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A
A relation is said to be equivalence if and only if it is Reflexive, Symmetric, and Transitive.