Let f : R →R be defined as \(f(x)=10x+7.\) Find the function g : f→R such that gof=f o g=1R.
It is given that f: R → R is defined as f(x) = 10x + 7.
One-one: Let f(x) = f(y), where x, y ∈R.
⇒ 10x + 7 = 10y + 7
⇒ x = y
∴ f is a one-one function.
Onto: For y ∈ R, let y = 10x + 7.
=>x=y-\(\frac{7}{10}\)∈R
Therefore, for any y ∈ R, there exists x=y-\(\frac{7}{10}\)
such that \(f(x)=f(x=\frac{y-7}{10})=10(x=\frac{y-7}{10})+7=y-7+7=y\)
∴ f is onto.
Therefore, f is one-one and onto.
Thus, f is an invertible function.
Let us define g: R → R as \(g(y)=y-\frac{7}{10}\)
Now, we have:
\(gof(x)=g(f(x))=g(10x+7)=(10x+7)-\frac{7}{10}=\frac{10x}{10}=x\)
And, \(fog(y)=f(g(y))=f(y-\frac{7}{10})=10(y-\frac{7}{10})+7=y-7+7=y\)
Therefore \(gof=I_rand\,gof=I_R\)
Hence, the required function g: R → R is defined as \(g(y)=y-\frac{7}{10}\)
LIST I | LIST II | ||
A. | Range of y=cosec-1x | I. | R-(-1, 1) |
B. | Domain of sec-1x | II. | (0, π) |
C. | Domain of sin-1x | III. | [-1, 1] |
D. | Range of y=cot-1x | IV. | \([\frac{-π}{2},\frac{π}{2}]\)-{0} |
What is the Planning Process?