\(f(x) = log_e (x^2+1) - e^{-x} + 1\)
\(f‘(x) = \frac {2x}{x^2+1}+e^{−x}\)
\(f‘(x) = \frac {2}{x+\frac 1x }+ e^{-x}>0\) \(∀x∈R\)
\(g(x) = e^{−x}−2e^x\)
\(g‘(x) = −e^{−x}−2e^x<0\) \(∀x∈R\)
⇒ f(x) is increasing and g(x) is decreasing function.
\(f(g(\frac {(α−1)^2}{3})) > f(g(α−\frac 53))\)
⇒ \(\frac {(α−1)^2}{3} < α−\frac 53\)
\(= α^2 – 5α + 6 < 0\)
= \((α – 2)(α – 3) < 0\)
= \(α ∈ (2, 3)\)
So, the correct option is (A): \((2,3)\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Let $ A $ be the set of all functions $ f: \mathbb{Z} \to \mathbb{Z} $ and $ R $ be a relation on $ A $ such that $$ R = \{ (f, g) : f(0) = g(1) \text{ and } f(1) = g(0) \} $$ Then $ R $ is:
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
A relation R from a non-empty set B is a subset of the cartesian product A × B. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in A × B.
A relation f from a set A to a set B is said to be a function if every element of set A has one and only one image in set B. In other words, no two distinct elements of B have the same pre-image.
Relations and functions can be represented in different forms such as arrow representation, algebraic form, set-builder form, graphically, roster form, and tabular form. Define a function f: A = {1, 2, 3} → B = {1, 4, 9} such that f(1) = 1, f(2) = 4, f(3) = 9. Now, represent this function in different forms.