We are given: \[ F(x) = x f(x) \] Differentiating both sides: \[ F'(x) = f(x) + x f'(x) \] Now consider the given integral: \[ \int_0^2 x F'(x) \, dx = \int_0^2 x \left( f(x) + x f'(x) \right) \, dx \] Splitting the integral into two parts: \[ \int_0^2 x f(x) \, dx + \int_0^2 x^2 f'(x) \, dx = 6 \]
Step 2: Using the Given InformationFrom the given condition: \[ F(2) = 2 \times f(2) = 2 \quad \text{(since \(f(2) = 1\))} \] Substituting back into the integration results: \[ \int_0^2 x F(x) \, dx = -2 \]
Step 3: Compute the Final SumUsing the given condition: \[ F'(2) + \int_0^2 F(x) \, dx = 15 \]
Final Answer: 15Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: