We are given that \( f(x) \) is a thrice differentiable function with specific values at points \( x = 0, 1, 2, 3, \) and \( 4 \). Based on these values, it appears that \( f(x) \) oscillates, implying multiple sign changes, which indicate roots within the interval.
\[ (3f'f'' + ff''')(x) = \left((ff'' + (f')^2)(x)\right)' \]
\[ \left((ff'') + (f')^2\right)(x) = \left((ff')(x)\right)' \]
\[ \therefore (3f'f'' + ff''')(x) = \left(f(x) \cdot f'(x)\right)'' \]
\[ \text{min. roots of } f(x) \to 4 \] \[ \therefore \text{min. roots of } f'(x) \to 3 \] \[ \therefore \text{min. roots of } (f(x) \cdot f'(x)) \to 7 \] \[ \therefore \text{min. roots of } (f(x) \cdot f'(x))'' \to 5 \]
Thus, the expression \( (3f'f'' + ff''')(x) = (f'(x) \cdot f(x))'' \) must have at least 5 roots, given the oscillatory behavior and the higher order of differentiation.
The minimum number of roots of \( (3f'f'' + ff''')(x) \) is 5.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: