Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $f(0) = 1$ and $f(2x) - f(x) = x$ for all $x \in \mathbb{R}$. If $\lim_{n \to \infty} \left\{ f(x) - f\left( \frac{x}{2^n} \right) \right\} = G(x)$, then $\sum_{r=1}^{10} G(r^2)$ is equal to
We are given a continuous function \( f:\mathbb{R}\to\mathbb{R} \) with \( f(0)=1 \) satisfying \( f(2x)-f(x)=x \) for all \( x \in \mathbb{R} \). We must find \( G(x)=\lim_{n\to\infty}\{f(x)-f(x/2^n)\} \) and then evaluate \( \sum_{r=1}^{10} G(r^2) \).
Use the functional equation iteratively at the arguments \( x/2^{k+1} \) to obtain a telescoping sum for \( f(x)-f(x/2^n) \). Then pass to the limit as \( n\to\infty \). Finally, compute the required finite sum.
Step 1: Apply the given relation at \( x/2^{k+1} \):
\[ f\!\left(\frac{x}{2^{k}}\right)-f\!\left(\frac{x}{2^{k+1}}\right) = f\!\left(2\cdot\frac{x}{2^{k+1}}\right)-f\!\left(\frac{x}{2^{k+1}}\right) = \frac{x}{2^{k+1}},\quad k=0,1,\dots,n-1. \]Step 2: Sum from \( k=0 \) to \( n-1 \) (telescoping):
\[ f(x)-f\!\left(\frac{x}{2^{n}}\right)=\sum_{k=0}^{n-1}\frac{x}{2^{k+1}} = x\!\sum_{k=0}^{n-1}\frac{1}{2^{k+1}} = x\!\left(1-\frac{1}{2^{n}}\right). \]Step 3: Pass to the limit to get \( G(x) \):
\[ G(x)=\lim_{n\to\infty}\left\{f(x)-f\!\left(\frac{x}{2^{n}}\right)\right\} = \lim_{n\to\infty} x\!\left(1-\frac{1}{2^{n}}\right)=x. \](Equivalently, continuity gives \( f(x/2^n)\to f(0)=1 \), and the above identity also implies \( f(x)-1=x \Rightarrow f(x)=1+x \), consistent with the relation.)
Thus \( G(x)=x \). Therefore,
\[ \sum_{r=1}^{10} G(r^2)=\sum_{r=1}^{10} r^2=\frac{10\cdot 11\cdot 21}{6}=385. \]Answer: \(385\).
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to:
Let the domain of the function \( f(x) = \log_{2} \log_{4} \log_{6}(3 + 4x - x^{2}) \) be \( (a, b) \). If \[ \int_{0}^{b-a} [x^{2}] \, dx = p - \sqrt{q} - \sqrt{r}, \quad p, q, r \in \mathbb{N}, \, \gcd(p, q, r) = 1, \] where \([ \, ]\) is the greatest integer function, then \( p + q + r \) is equal to
Arrange the following in increasing order of solubility product:
\[ {Ca(OH)}_2, {AgBr}, {PbS}, {HgS} \]
For a short dipole placed at origin O, the dipole moment P is along the X-axis, as shown in the figure. If the electric potential and electric field at A are V and E respectively, then the correct combination of the electric potential and electric field, respectively, at point B on the Y-axis is given by:
