To solve the problem, we need to determine the value of \( |a + b + c| \). We are given a function \( f(x) = ae^{2x} + be^x + cx \) and specific conditions that the function must satisfy.
Therefore, the answer is 8.
The function is given by:
\(f(x) = ae^{2x} + be^x + c\).
Given \(f(0) = -1\):
\(f(0) = a + b + c = -1\).
Differentiate \(f(x)\):
\(f'(x) = 2ae^{2x} + be^x\).
Given \(f'( \log_e 2) = 21\):
\(8a + 2b = 21 \Rightarrow 4a + b = 10.5\).
Evaluate the integral:
\(\int_{0}^{\log_e 4} (f(x) - cx) dx = \int_{0}^{\log_e 4} (ae^{2x} + be^x + c - cx) dx = \frac{39}{2}\).
Break into parts and evaluate each:
\(\frac{15a}{2} + 3b + c \log_e 4 - c \times \frac{(\log_e 4)^2}{2} = \frac{39}{2}\).
Solve for \(a\), \(b\), and \(c\). The value of \(|a + b + c|\) is:
\(15a + 6b = 39\)
\(15a - 6a - 6 = 39\)
\(9a = 45 \Rightarrow a = 5\)
\(b = -6\)
\(c = 21 - 40 + 12 = -7\)
\(a + b + c = -8\)
\(|a + b + c| = 8\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
