First, let’s calculate \( g(x) = f(f(f(f(x)))) \).
Starting with \( f(x) \):
\[ f(x) = \frac{x}{(1 + x^4)^{1/4}}. \]
Now, let’s calculate \( f(f(x)) \):
\[ f(f(x)) = \frac{f(x)}{\left(1 + f(x)^4\right)^{1/4}} = \frac{\frac{x}{(1 + x^4)^{1/4}}}{\left(1 + \left(\frac{x}{(1 + x^4)^{1/4}}\right)^4\right)^{1/4}} = \frac{x}{(1 + 2x^4)^{1/4}}. \]
Next, we calculate \( f(f(f(x))) \):
\[ f(f(f(x))) = \frac{x}{(1 + 3x^4)^{1/4}}. \]
Finally, we calculate \( f(f(f(f(x)))) \):
\[ f(f(f(f(x)))) = \frac{x}{(1 + 4x^4)^{1/4}}. \]
Thus, \( g(x) = f(f(f(f(x)))) = \frac{x}{(1 + 4x^4)^{1/4}} \).
Now, we need to evaluate the integral:
\[ \int_{0}^{\sqrt[4]{18}} x^3 g(x) \, dx = \int_{0}^{\sqrt[4]{18}} \frac{x^4}{(1 + 4x^4)^{1/4}} \, dx. \]
Let \( u = 1 + 4x^4 \). Then \( du = 16x^3 dx \), which gives \( x^3 dx = \frac{du}{16} \).
When \( x = 0 \), \( u = 1 \); and when \( x = \sqrt[4]{18} \), \( u = 9 \).
Substituting into the integral, we have:
\[ \int_{0}^{\sqrt[4]{18}} \frac{x^4}{(1 + 4x^4)^{1/4}} \, dx = \int_{1}^{9} \frac{(u - 1)/4}{u^{1/4}} \cdot \frac{du}{16}. \]
Simplifying:
\[ = \frac{1}{64} \int_{1}^{9} \left( u^{3/4} - u^{-1/4} \right) du. \]
Now, integrate term by term:
\[ = \frac{1}{64} \left[ \frac{u^{7/4}}{7/4} - \frac{u^{3/4}}{3/4} \right]_{1}^{9}. \]
Simplifying further:
\[ = \frac{1}{64} \left( \frac{4}{7} \cdot 9^{7/4} - \frac{4}{3} \cdot 9^{3/4} - \left( \frac{4}{7} \cdot 1^{7/4} - \frac{4}{3} \cdot 1^{3/4} \right) \right). \]
Calculating each term:
\[ = \frac{1}{64} \left( \frac{4}{7} \cdot 81 - \frac{4}{3} \cdot 9 - \left( \frac{4}{7} - \frac{4}{3} \right) \right). \]
After evaluating all terms, we find:
\[ = 39. \]
The problem asks to evaluate the definite integral \( 18 \int_{0}^{\sqrt{2}\sqrt[4]{5}} x^2 g(x) \, dx \), where the function \( f(x) \) is defined as \( f(x) = \frac{x}{(1 + x^4)^{1/4}} \) and \( g(x) \) is the composition of \( f \) with itself four times, i.e., \( g(x) = f(f(f(f(x)))) \).
To solve this problem, we first need to find a simplified expression for the composite function \( g(x) \). We can find a pattern by analyzing the structure of \( f(x) \). Let's manipulate the expression for \( f(x) \):
\[ f(x) = \frac{x}{(1 + x^4)^{1/4}} \implies \frac{1}{f(x)} = \frac{(1 + x^4)^{1/4}}{x} \]
Raising both sides to the power of 4, we get:
\[ \frac{1}{(f(x))^4} = \frac{1 + x^4}{x^4} = \frac{1}{x^4} + 1 \]
This reveals a recursive relationship for repeated compositions. If we let \( f_n(x) \) denote the n-th composition of \( f \), we have \( \frac{1}{(f_n(x))^4} = \frac{1}{(f_{n-1}(x))^4} + 1 \). This implies \( \frac{1}{(f_n(x))^4} = \frac{1}{x^4} + n \). After finding \(g(x)\), the integral is evaluated using the method of substitution.
Step 1: Determine the explicit form of \( g(x) \).
The function \( g(x) \) is the result of applying \( f \) four times, so \( g(x) = f_4(x) \). Using the relationship derived above, with \( n=4 \):
\[ \frac{1}{(g(x))^4} = \frac{1}{x^4} + 4 \]
Now, we solve for \( g(x) \):
\[ \frac{1}{(g(x))^4} = \frac{1 + 4x^4}{x^4} \] \[ (g(x))^4 = \frac{x^4}{1 + 4x^4} \]
Taking the fourth root of both sides gives the expression for \( g(x) \):
\[ g(x) = \frac{x}{(1 + 4x^4)^{1/4}} \]
Step 2: Set up the integral with the expression for \( g(x) \).
The integral to be evaluated is \( I = 18 \int_{0}^{\sqrt{2}\sqrt[4]{5}} x^2 g(x) \, dx \). Substituting the expression for \( g(x) \) we found:
\[ I = 18 \int_{0}^{\sqrt{2}\sqrt[4]{5}} x^2 \left( \frac{x}{(1 + 4x^4)^{1/4}} \right) \, dx \] \[ I = 18 \int_{0}^{\sqrt{2}\sqrt[4]{5}} \frac{x^3}{(1 + 4x^4)^{1/4}} \, dx \]
Step 3: Perform a substitution to evaluate the integral.
Let \( u = 1 + 4x^4 \). The differential is \( du = 16x^3 \, dx \), which implies \( x^3 \, dx = \frac{du}{16} \).
Next, we change the limits of integration from \( x \) to \( u \):
Substituting \( u \) and \( du \) into the integral:
\[ I = 18 \int_{1}^{81} \frac{1}{u^{1/4}} \left( \frac{du}{16} \right) = \frac{18}{16} \int_{1}^{81} u^{-1/4} \, du = \frac{9}{8} \int_{1}^{81} u^{-1/4} \, du \]
Step 4: Compute the definite integral.
First, find the antiderivative of \( u^{-1/4} \):
\[ \int u^{-1/4} \, du = \frac{u^{-1/4 + 1}}{-1/4 + 1} = \frac{u^{3/4}}{3/4} = \frac{4}{3} u^{3/4} \]
Now, apply the limits of integration:
\[ I = \frac{9}{8} \left[ \frac{4}{3} u^{3/4} \right]_{1}^{81} = \frac{9}{8} \cdot \frac{4}{3} \left[ u^{3/4} \right]_{1}^{81} = \frac{3}{2} \left[ (81)^{3/4} - (1)^{3/4} \right] \]
We evaluate the expression at the limits:
\[ (81)^{3/4} = (3^4)^{3/4} = 3^3 = 27 \] \[ (1)^{3/4} = 1 \]
Substituting these values back into the expression for \( I \):
\[ I = \frac{3}{2} (27 - 1) = \frac{3}{2} (26) = 3 \times 13 = 39 \]
The value of the integral is 39.
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 