First, let’s calculate \( g(x) = f(f(f(f(x)))) \).
Starting with \( f(x) \):
\[ f(x) = \frac{x}{(1 + x^4)^{1/4}}. \]
Now, let’s calculate \( f(f(x)) \):
\[ f(f(x)) = \frac{f(x)}{\left(1 + f(x)^4\right)^{1/4}} = \frac{\frac{x}{(1 + x^4)^{1/4}}}{\left(1 + \left(\frac{x}{(1 + x^4)^{1/4}}\right)^4\right)^{1/4}} = \frac{x}{(1 + 2x^4)^{1/4}}. \]
Next, we calculate \( f(f(f(x))) \):
\[ f(f(f(x))) = \frac{x}{(1 + 3x^4)^{1/4}}. \]
Finally, we calculate \( f(f(f(f(x)))) \):
\[ f(f(f(f(x)))) = \frac{x}{(1 + 4x^4)^{1/4}}. \]
Thus, \( g(x) = f(f(f(f(x)))) = \frac{x}{(1 + 4x^4)^{1/4}} \).
Now, we need to evaluate the integral:
\[ \int_{0}^{\sqrt[4]{18}} x^3 g(x) \, dx = \int_{0}^{\sqrt[4]{18}} \frac{x^4}{(1 + 4x^4)^{1/4}} \, dx. \]
Let \( u = 1 + 4x^4 \). Then \( du = 16x^3 dx \), which gives \( x^3 dx = \frac{du}{16} \).
When \( x = 0 \), \( u = 1 \); and when \( x = \sqrt[4]{18} \), \( u = 9 \).
Substituting into the integral, we have:
\[ \int_{0}^{\sqrt[4]{18}} \frac{x^4}{(1 + 4x^4)^{1/4}} \, dx = \int_{1}^{9} \frac{(u - 1)/4}{u^{1/4}} \cdot \frac{du}{16}. \]
Simplifying:
\[ = \frac{1}{64} \int_{1}^{9} \left( u^{3/4} - u^{-1/4} \right) du. \]
Now, integrate term by term:
\[ = \frac{1}{64} \left[ \frac{u^{7/4}}{7/4} - \frac{u^{3/4}}{3/4} \right]_{1}^{9}. \]
Simplifying further:
\[ = \frac{1}{64} \left( \frac{4}{7} \cdot 9^{7/4} - \frac{4}{3} \cdot 9^{3/4} - \left( \frac{4}{7} \cdot 1^{7/4} - \frac{4}{3} \cdot 1^{3/4} \right) \right). \]
Calculating each term:
\[ = \frac{1}{64} \left( \frac{4}{7} \cdot 81 - \frac{4}{3} \cdot 9 - \left( \frac{4}{7} - \frac{4}{3} \right) \right). \]
After evaluating all terms, we find:
\[ = 39. \]
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).