First, let’s calculate \( g(x) = f(f(f(f(x)))) \).
Starting with \( f(x) \):
\[ f(x) = \frac{x}{(1 + x^4)^{1/4}}. \]
Now, let’s calculate \( f(f(x)) \):
\[ f(f(x)) = \frac{f(x)}{\left(1 + f(x)^4\right)^{1/4}} = \frac{\frac{x}{(1 + x^4)^{1/4}}}{\left(1 + \left(\frac{x}{(1 + x^4)^{1/4}}\right)^4\right)^{1/4}} = \frac{x}{(1 + 2x^4)^{1/4}}. \]
Next, we calculate \( f(f(f(x))) \):
\[ f(f(f(x))) = \frac{x}{(1 + 3x^4)^{1/4}}. \]
Finally, we calculate \( f(f(f(f(x)))) \):
\[ f(f(f(f(x)))) = \frac{x}{(1 + 4x^4)^{1/4}}. \]
Thus, \( g(x) = f(f(f(f(x)))) = \frac{x}{(1 + 4x^4)^{1/4}} \).
Now, we need to evaluate the integral:
\[ \int_{0}^{\sqrt[4]{18}} x^3 g(x) \, dx = \int_{0}^{\sqrt[4]{18}} \frac{x^4}{(1 + 4x^4)^{1/4}} \, dx. \]
Let \( u = 1 + 4x^4 \). Then \( du = 16x^3 dx \), which gives \( x^3 dx = \frac{du}{16} \).
When \( x = 0 \), \( u = 1 \); and when \( x = \sqrt[4]{18} \), \( u = 9 \).
Substituting into the integral, we have:
\[ \int_{0}^{\sqrt[4]{18}} \frac{x^4}{(1 + 4x^4)^{1/4}} \, dx = \int_{1}^{9} \frac{(u - 1)/4}{u^{1/4}} \cdot \frac{du}{16}. \]
Simplifying:
\[ = \frac{1}{64} \int_{1}^{9} \left( u^{3/4} - u^{-1/4} \right) du. \]
Now, integrate term by term:
\[ = \frac{1}{64} \left[ \frac{u^{7/4}}{7/4} - \frac{u^{3/4}}{3/4} \right]_{1}^{9}. \]
Simplifying further:
\[ = \frac{1}{64} \left( \frac{4}{7} \cdot 9^{7/4} - \frac{4}{3} \cdot 9^{3/4} - \left( \frac{4}{7} \cdot 1^{7/4} - \frac{4}{3} \cdot 1^{3/4} \right) \right). \]
Calculating each term:
\[ = \frac{1}{64} \left( \frac{4}{7} \cdot 81 - \frac{4}{3} \cdot 9 - \left( \frac{4}{7} - \frac{4}{3} \right) \right). \]
After evaluating all terms, we find:
\[ = 39. \]
The problem asks to evaluate the definite integral \( 18 \int_{0}^{\sqrt{2}\sqrt[4]{5}} x^2 g(x) \, dx \), where the function \( f(x) \) is defined as \( f(x) = \frac{x}{(1 + x^4)^{1/4}} \) and \( g(x) \) is the composition of \( f \) with itself four times, i.e., \( g(x) = f(f(f(f(x)))) \).
To solve this problem, we first need to find a simplified expression for the composite function \( g(x) \). We can find a pattern by analyzing the structure of \( f(x) \). Let's manipulate the expression for \( f(x) \):
\[ f(x) = \frac{x}{(1 + x^4)^{1/4}} \implies \frac{1}{f(x)} = \frac{(1 + x^4)^{1/4}}{x} \]
Raising both sides to the power of 4, we get:
\[ \frac{1}{(f(x))^4} = \frac{1 + x^4}{x^4} = \frac{1}{x^4} + 1 \]
This reveals a recursive relationship for repeated compositions. If we let \( f_n(x) \) denote the n-th composition of \( f \), we have \( \frac{1}{(f_n(x))^4} = \frac{1}{(f_{n-1}(x))^4} + 1 \). This implies \( \frac{1}{(f_n(x))^4} = \frac{1}{x^4} + n \). After finding \(g(x)\), the integral is evaluated using the method of substitution.
Step 1: Determine the explicit form of \( g(x) \).
The function \( g(x) \) is the result of applying \( f \) four times, so \( g(x) = f_4(x) \). Using the relationship derived above, with \( n=4 \):
\[ \frac{1}{(g(x))^4} = \frac{1}{x^4} + 4 \]
Now, we solve for \( g(x) \):
\[ \frac{1}{(g(x))^4} = \frac{1 + 4x^4}{x^4} \] \[ (g(x))^4 = \frac{x^4}{1 + 4x^4} \]
Taking the fourth root of both sides gives the expression for \( g(x) \):
\[ g(x) = \frac{x}{(1 + 4x^4)^{1/4}} \]
Step 2: Set up the integral with the expression for \( g(x) \).
The integral to be evaluated is \( I = 18 \int_{0}^{\sqrt{2}\sqrt[4]{5}} x^2 g(x) \, dx \). Substituting the expression for \( g(x) \) we found:
\[ I = 18 \int_{0}^{\sqrt{2}\sqrt[4]{5}} x^2 \left( \frac{x}{(1 + 4x^4)^{1/4}} \right) \, dx \] \[ I = 18 \int_{0}^{\sqrt{2}\sqrt[4]{5}} \frac{x^3}{(1 + 4x^4)^{1/4}} \, dx \]
Step 3: Perform a substitution to evaluate the integral.
Let \( u = 1 + 4x^4 \). The differential is \( du = 16x^3 \, dx \), which implies \( x^3 \, dx = \frac{du}{16} \).
Next, we change the limits of integration from \( x \) to \( u \):
Substituting \( u \) and \( du \) into the integral:
\[ I = 18 \int_{1}^{81} \frac{1}{u^{1/4}} \left( \frac{du}{16} \right) = \frac{18}{16} \int_{1}^{81} u^{-1/4} \, du = \frac{9}{8} \int_{1}^{81} u^{-1/4} \, du \]
Step 4: Compute the definite integral.
First, find the antiderivative of \( u^{-1/4} \):
\[ \int u^{-1/4} \, du = \frac{u^{-1/4 + 1}}{-1/4 + 1} = \frac{u^{3/4}}{3/4} = \frac{4}{3} u^{3/4} \]
Now, apply the limits of integration:
\[ I = \frac{9}{8} \left[ \frac{4}{3} u^{3/4} \right]_{1}^{81} = \frac{9}{8} \cdot \frac{4}{3} \left[ u^{3/4} \right]_{1}^{81} = \frac{3}{2} \left[ (81)^{3/4} - (1)^{3/4} \right] \]
We evaluate the expression at the limits:
\[ (81)^{3/4} = (3^4)^{3/4} = 3^3 = 27 \] \[ (1)^{3/4} = 1 \]
Substituting these values back into the expression for \( I \):
\[ I = \frac{3}{2} (27 - 1) = \frac{3}{2} (26) = 3 \times 13 = 39 \]
The value of the integral is 39.
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
