Given:
\[ \lim_{x \to \infty} \frac{f(7x)}{f(x)} = 1 \]
Since \( f \) is strictly increasing, we have:
\[ f(x) < f(5x) < f(7x) \]
This implies:
\[ \lim_{x \to \infty} \frac{f(5x)}{f(x)} = 1 \]
Then:
\[ \lim_{x \to \infty} \left[ \frac{f(5x)}{f(x)} - 1 \right] = 1 - 1 = 0 \]
Thus, the answer is: 0.
Let A be a 3 Γ 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: