Given:
\[ \lim_{x \to \infty} \frac{f(7x)}{f(x)} = 1 \]
Since \( f \) is strictly increasing, we have:
\[ f(x) < f(5x) < f(7x) \]
This implies:
\[ \lim_{x \to \infty} \frac{f(5x)}{f(x)} = 1 \]
Then:
\[ \lim_{x \to \infty} \left[ \frac{f(5x)}{f(x)} - 1 \right] = 1 - 1 = 0 \]
Thus, the answer is: 0.
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OHβ, H_3O+, (CH_3)_2CO, NCH_3\)