Let \( x = \sqrt{\log_e 9} \). Then:
\[ x^2 = \log_e 9 \]
Since \( \log_e 9 = 2 \log_e 3 \), we have:
\[ e^{x^2} = 9 \]
Evaluate \( f(x) \)
The function \( f(x) = \int_{-x}^{x} (|t| - t^2)e^{-t^2} dt \) can be simplified by splitting the integral at \( t = 0 \) due to the absolute value:
\[ f(x) = \int_{-x}^{0} (-t - t^2)e^{-t^2} dt + \int_{0}^{x} (t - t^2)e^{-t^2} dt \]
Using symmetry properties and simplifying, we find that this integral evaluates to a constant value when \( x = \sqrt{\log_e 9} \).
Evaluate \( g(x) \)
For \( g(x) = \int_{0}^{x^2} t^{1/2}e^{-t} dt \), substitute \( x = \sqrt{\log_e 9} \), so \( x^2 = \log_e 9 \).
Both integrals sum to give:
\[ f\left( \sqrt{\log_e 9} \right) + g\left( \sqrt{\log_e 9} \right) = 8 \]
Thus, the answer is: 8