Functional Equations
The functional equations imply:
Given:
Step 1: Solve for k and a
From the equation \( f(-3) = 12 \), we get:
\[ k \cdot \left( -\frac{3}{5} \right) = 12 \quad \Rightarrow \quad k = -20 \]
Similarly:
Substituting \( g\left( -\frac{1}{3} \right) = 2 \), we get:
\[ a \cdot \left( -\frac{1}{3} \right) = 2 \quad \Rightarrow \quad a = \frac{1}{8} \]
Step 2: Calculate function values
Step 3: Final Calculation
Now, calculate:
\[ f\left( \frac{1}{4} \right) + g(-2) - 8 \cdot g(0) = -5 + 64 - 8 \cdot 1 = 51 \]
To solve the problem, analyze the functional equations and given values.
Given:
- \(f: \mathbb{R} \to \mathbb{R}\) with \(f(x + y) = f(x) + f(y)\) (Cauchy functional equation, additive function).
- \(g: \mathbb{R} \to (0, \infty)\) with \(g(x + y) = g(x) g(y)\) (exponential-type function).
- \(f\left(-\frac{3}{5}\right) = 12\)
- \(g\left(-\frac{1}{3}\right) = 2\)
Step 1: Determine \(f(x)\)
For additive functions, \(f(x) = kx\) for some constant \(k\).
Given: \[ f\left(-\frac{3}{5}\right) = k \times \left(-\frac{3}{5}\right) = 12 \implies k = \frac{12}{-\frac{3}{5}} = 12 \times \left(-\frac{5}{3}\right) = -20 \] So, \[ f(x) = -20 x \]
Step 2: Determine \(g(x)\)
For multiplicative function with positive values, \(g(x) = a^x\) for some \(a > 0\).
Given: \[ g\left(-\frac{1}{3}\right) = a^{-\frac{1}{3}} = 2 \implies a^{\frac{1}{3}} = \frac{1}{2} \implies a = \left(\frac{1}{2}\right)^3 = \frac{1}{8} \] Thus, \[ g(x) = \left(\frac{1}{8}\right)^x = 8^{-x} \]
Step 3: Compute required expression:
\[ (f(\frac{1}{4}) + g(-2) - 8) \times g(0) \] Calculate each term: \[ f\left(\frac{1}{4}\right) = -20 \times \frac{1}{4} = -5 \] \[ g(-2) = 8^{-(-2)} = 8^2 = 64 \] \[ g(0) = 8^{0} = 1 \] So, \[ (f(\frac{1}{4}) + g(-2) - 8) g(0) = (-5 + 64 - 8) \times 1 = (51) \times 1 = 51 \]
Final Answer:
\[ \boxed{51} \]
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to:
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?