Functional Equations
The functional equations imply:
Given:
Step 1: Solve for k and a
From the equation \( f(-3) = 12 \), we get:
\[ k \cdot \left( -\frac{3}{5} \right) = 12 \quad \Rightarrow \quad k = -20 \]
Similarly:
Substituting \( g\left( -\frac{1}{3} \right) = 2 \), we get:
\[ a \cdot \left( -\frac{1}{3} \right) = 2 \quad \Rightarrow \quad a = \frac{1}{8} \]
Step 2: Calculate function values
Step 3: Final Calculation
Now, calculate:
\[ f\left( \frac{1}{4} \right) + g(-2) - 8 \cdot g(0) = -5 + 64 - 8 \cdot 1 = 51 \]
To solve the problem, analyze the functional equations and given values.
Given:
- \(f: \mathbb{R} \to \mathbb{R}\) with \(f(x + y) = f(x) + f(y)\) (Cauchy functional equation, additive function).
- \(g: \mathbb{R} \to (0, \infty)\) with \(g(x + y) = g(x) g(y)\) (exponential-type function).
- \(f\left(-\frac{3}{5}\right) = 12\)
- \(g\left(-\frac{1}{3}\right) = 2\)
Step 1: Determine \(f(x)\)
For additive functions, \(f(x) = kx\) for some constant \(k\).
Given: \[ f\left(-\frac{3}{5}\right) = k \times \left(-\frac{3}{5}\right) = 12 \implies k = \frac{12}{-\frac{3}{5}} = 12 \times \left(-\frac{5}{3}\right) = -20 \] So, \[ f(x) = -20 x \]
Step 2: Determine \(g(x)\)
For multiplicative function with positive values, \(g(x) = a^x\) for some \(a > 0\).
Given: \[ g\left(-\frac{1}{3}\right) = a^{-\frac{1}{3}} = 2 \implies a^{\frac{1}{3}} = \frac{1}{2} \implies a = \left(\frac{1}{2}\right)^3 = \frac{1}{8} \] Thus, \[ g(x) = \left(\frac{1}{8}\right)^x = 8^{-x} \]
Step 3: Compute required expression:
\[ (f(\frac{1}{4}) + g(-2) - 8) \times g(0) \] Calculate each term: \[ f\left(\frac{1}{4}\right) = -20 \times \frac{1}{4} = -5 \] \[ g(-2) = 8^{-(-2)} = 8^2 = 64 \] \[ g(0) = 8^{0} = 1 \] So, \[ (f(\frac{1}{4}) + g(-2) - 8) g(0) = (-5 + 64 - 8) \times 1 = (51) \times 1 = 51 \]
Final Answer:
\[ \boxed{51} \]
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
Give reasons to support your answer to (i).
Find the domain of the function \( f(x) = \cos^{-1}(x^2 - 4) \).
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____