1. Given Function:
We are given the following function $ f(x) $, which is defined as:
$f(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x^2}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$
2. Analyzing $f(x) = 0$:
We are given that $ f(x) = 0 $, which implies:
$ \sin\left( \frac{\pi}{x^2} \right) = 0 $
3. Solving for $x$:
The sine function equals zero when its argument is a multiple of $\pi$, so we get:
$ \frac{\pi}{x^2} = n\pi $
4. Solving for $x^2$:
Simplifying the equation:
$ x^2 = \frac{1}{n} $
5. Solving for $x$:
Taking the square root of both sides:
$ x = \frac{1}{\sqrt{n}} $
6. Interpreting Values of $n$:
Now, we consider different intervals for $x$:
If $ x \in \left[ \frac{1}{10^{10}}, \infty \right) $:
We get:
$ \frac{1}{\sqrt{n}} \in \left[ 10^{10}, \infty \right) \Rightarrow n \in (0, (10^{10})^2) $
So, the finite values of $n$ are $ n = 1, 2, 3, \dots, 9 $.
If $ x \in \left[ 1, \pi \right) $:
We get:
$ \sqrt{n} \in \left( 0, \pi^2 \right) \Rightarrow n \in (0, \pi^2) $
So, $ n \in (0, \pi^2) $.
If $ x \in \left( 0, \frac{1}{10^{10}} \right) $:
We get:
$ \sqrt{n} \in (10^{10}, \infty) \Rightarrow n \text{ is infinite.} $
If $ x \in \left[ \frac{1}{\pi^2}, \frac{1}{\pi} \right) $:
We get:
$ \sqrt{n} \in (\pi, \pi^2) \Rightarrow n \in (\pi^2, \pi^4) $
There are more than 25 solutions for this case.
Final Answer:
The values of $n$ are finite in the first two cases, infinite in the third case, and there are more than 25 solutions in the fourth case.
To solve the problem, we analyze the solutions of the equation \(f(x) = 0\) for the function:
\[ f(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x^2}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases} \]
1. Condition for \(f(x) = 0\) when \(x \neq 0\):
\[ x^2 \sin\left(\frac{\pi}{x^2}\right) = 0 \implies \sin\left(\frac{\pi}{x^2}\right) = 0 \] \[ \Rightarrow \frac{\pi}{x^2} = n\pi, \quad n \in \mathbb{Z} \] \[ \Rightarrow \frac{1}{x^2} = n \implies x = \pm \frac{1}{\sqrt{n}}, \quad n \in \mathbb{N} \]
2. Solutions of \(f(x) = 0\) are at:
\[ x = \pm \frac{1}{\sqrt{n}}, \quad n=1,2,3,\dots \] Considering only positive \(x\), solutions are:
\[ x_n = \frac{1}{\sqrt{n}} \]
3. Analyze solutions in given intervals:
Final Answer:
Statements 4 are TRUE.
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 