1. Given Function:
We are given the following function $ f(x) $, which is defined as:
$f(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x^2}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$
2. Analyzing $f(x) = 0$:
We are given that $ f(x) = 0 $, which implies:
$ \sin\left( \frac{\pi}{x^2} \right) = 0 $
3. Solving for $x$:
The sine function equals zero when its argument is a multiple of $\pi$, so we get:
$ \frac{\pi}{x^2} = n\pi $
4. Solving for $x^2$:
Simplifying the equation:
$ x^2 = \frac{1}{n} $
5. Solving for $x$:
Taking the square root of both sides:
$ x = \frac{1}{\sqrt{n}} $
6. Interpreting Values of $n$:
Now, we consider different intervals for $x$:
If $ x \in \left[ \frac{1}{10^{10}}, \infty \right) $:
We get:
$ \frac{1}{\sqrt{n}} \in \left[ 10^{10}, \infty \right) \Rightarrow n \in (0, (10^{10})^2) $
So, the finite values of $n$ are $ n = 1, 2, 3, \dots, 9 $.
If $ x \in \left[ 1, \pi \right) $:
We get:
$ \sqrt{n} \in \left( 0, \pi^2 \right) \Rightarrow n \in (0, \pi^2) $
So, $ n \in (0, \pi^2) $.
If $ x \in \left( 0, \frac{1}{10^{10}} \right) $:
We get:
$ \sqrt{n} \in (10^{10}, \infty) \Rightarrow n \text{ is infinite.} $
If $ x \in \left[ \frac{1}{\pi^2}, \frac{1}{\pi} \right) $:
We get:
$ \sqrt{n} \in (\pi, \pi^2) \Rightarrow n \in (\pi^2, \pi^4) $
There are more than 25 solutions for this case.
Final Answer:
The values of $n$ are finite in the first two cases, infinite in the third case, and there are more than 25 solutions in the fourth case.
To solve the problem, we analyze the solutions of the equation \(f(x) = 0\) for the function:
\[ f(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x^2}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases} \]
1. Condition for \(f(x) = 0\) when \(x \neq 0\):
\[ x^2 \sin\left(\frac{\pi}{x^2}\right) = 0 \implies \sin\left(\frac{\pi}{x^2}\right) = 0 \] \[ \Rightarrow \frac{\pi}{x^2} = n\pi, \quad n \in \mathbb{Z} \] \[ \Rightarrow \frac{1}{x^2} = n \implies x = \pm \frac{1}{\sqrt{n}}, \quad n \in \mathbb{N} \]
2. Solutions of \(f(x) = 0\) are at:
\[ x = \pm \frac{1}{\sqrt{n}}, \quad n=1,2,3,\dots \] Considering only positive \(x\), solutions are:
\[ x_n = \frac{1}{\sqrt{n}} \]
3. Analyze solutions in given intervals:
Final Answer:
Statements 4 are TRUE.
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: