Let f be a differential function satisfying
f(x) =\(\frac{ 2}{√3} \)\(∫^{√30} f(\frac{λ2x}{3})dλ,x>0 and f(1) = √3.\)
If y = f(x) passes through the point (α, 6), then α is equal to _____
∵ f(x) = \(\frac{2}{√3} \)\(∫^{√3}_0 f(\frac{λ^2x}{3})dλ, x>0....(i)\)
On differentiating both sides w.r.t., x, we get
f'(x) =\(\frac{2}{√3} \)\(∫^{√3}_0\)\(\frac{λ^2}{3}f'( \frac{λ^2x}{3})dλ\)
f'(x) = \(\frac{1}{√3} \)\(∫^{√3}_0\) λ. \(\frac{λ^2}{3}f'( \frac{λ^2x}{3})dλ\)
\(xf'(x) =\frac{ f(x)}{2}\)
On integrating we get :
In y = \(\frac{1}{2} \)In x + In c
∵ f(1) = √3 then c = √3
∴ (α,6) lies on
∴ y = √3x
∴ 6 = √3α
⇒ α = 12
List - I | List - II | ||
(P) | If a = 0, b = 1, c = 0 and d = 0, then | (1) | h is one-one. |
(Q) | If a = 1, b = 0, c = 0 and d = 0, then | (2) | h is onto. |
(R) | If a = 0, b = 0, c = 1 and d = 0, then | (3) | h is differentiable on \(\R\) |
(S) | If a = 0, b = 0, c = 0 and d = 1, then | (4) | the range of h is [0, 1]. |
(5) | the range of h is {0, 1}. |
Let \( f(x) = \sqrt{4 - x^2} \), \( g(x) = \sqrt{x^2 - 1} \). Then the domain of the function \( h(x) = f(x) + g(x) \) is equal to:
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
A function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output. Let A & B be any two non-empty sets, mapping from A to B will be a function only when every element in set A has one end only one image in set B.
The different types of functions are -
One to One Function: When elements of set A have a separate component of set B, we can determine that it is a one-to-one function. Besides, you can also call it injective.
Many to One Function: As the name suggests, here more than two elements in set A are mapped with one element in set B.
Moreover, if it happens that all the elements in set B have pre-images in set A, it is called an onto function or surjective function.
Also, if a function is both one-to-one and onto function, it is known as a bijective. This means, that all the elements of A are mapped with separate elements in B, and A holds a pre-image of elements of B.
Read More: Relations and Functions