For composite functions, always start by writing out the composite expression and then simplify it. To find points of discontinuity, focus on the denominator and find where it equals zero. In this case, \( y = f(f(x)) = \frac{x+2}{2x+5} \), so the function is discontinuous where \( 2x+5 = 0 \), which gives \( x = \frac{-5}{2} \).
The correct answer is: (B) \( \frac{-5}{2} \).
We are given the function \( f(x) = \frac{1}{x+2} \) and we are tasked with finding the point of discontinuity of the composite function \( y = f(f(x)) \).
Step 1: Find the composite functionList - I | List - II | ||
(P) | If a = 0, b = 1, c = 0 and d = 0, then | (1) | h is one-one. |
(Q) | If a = 1, b = 0, c = 0 and d = 0, then | (2) | h is onto. |
(R) | If a = 0, b = 0, c = 1 and d = 0, then | (3) | h is differentiable on \(\R\) |
(S) | If a = 0, b = 0, c = 0 and d = 1, then | (4) | the range of h is [0, 1]. |
(5) | the range of h is {0, 1}. |
Let \( f(x) = \sqrt{4 - x^2} \), \( g(x) = \sqrt{x^2 - 1} \). Then the domain of the function \( h(x) = f(x) + g(x) \) is equal to:
A block of certain mass is placed on a rough floor. The coefficients of static and kinetic friction between the block and the floor are 0.4 and 0.25 respectively. A constant horizontal force \( F = 20 \, \text{N} \) acts on it so that the velocity of the block varies with time according to the following graph. The mass of the block is nearly (Take \( g = 10 \, \text{m/s}^2 \)):
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
The circuit shown in the figure contains two ideal diodes \( D_1 \) and \( D_2 \). If a cell of emf 3V and negligible internal resistance is connected as shown, then the current through \( 70 \, \Omega \) resistance (in amperes) is: