Applying L'Hôpital's rule, we differentiate the numerator and the denominator:
\[ \lim_{t \to x} \frac{t^2 f(x) - x^2 f(t)}{t - x} = 1 \] \[ \lim_{t \to x} \frac{2t f(x) - x^2 f'(x)}{1} = 1 \]
Simplifying, we get:
\[ 2x f(x) - x^2 f'(x) = 1 \]
Rearranging terms:
\[ \frac{dy}{dx} = \frac{2}{x} \quad \text{where } y = -\frac{1}{x^2} \]
The differential equation becomes:
\[ \frac{dy}{dx} + \frac{y}{x} = \frac{2}{x^2} \]
Solving this differential equation, we assume:
\[ y = \frac{1}{3x} + \frac{2x^2}{3}, \quad \text{leading to: } y = \frac{2x^3 + 1}{3x} \]
Calculating specific values:
\[ f(2) = \frac{17}{6}, \quad f(3) = \frac{55}{9} \]
Thus: \[ 2f(2) + 3f(3) = \frac{17}{3} + \frac{55}{3} = \frac{72}{3} = 24 \]
The value of \[ \lim_{x \to \infty} \left( x - \sqrt{x^2 + x} \right) \] is equal to:
Integration of \(\ln(x)\) with \(x\), i.e. \(\int \ln(x)dx =\) __________.
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32