In an ellipse, the sum of distances from any point on the ellipse to the two foci equals \( 2a \) (major axis length).
\[
\frac{7}{2} + \frac{13}{2} = 10 \Rightarrow 2a = 10 \Rightarrow a = 5
\]
Let the coordinates of the foci be \( (\pm c, 0) \). Given the point \( P = \left(\frac{5}{2}, 2\sqrt{3}\right) \), apply the distance formula and solve for \( c \).
Eventually, using the relation \( c^2 = a^2 - b^2 \), and \( e = \frac{c}{a} \), we get:
\[
e = \frac{3}{5}
\]