Let d be the distance between the parallel lines 3x - 2y + 5 = 0 and 3x - 2y + 5 + 2√13 = 0. Let L1 = 3x - 2y + k1 = 0 (k1 > 0) and L2 = 3x - 2y + k2 = 0 (k2 > 0) be two lines that are at the distance of \(\frac{4d}{√13}\) and \(\frac{3d}{√13}\) from the line 3x - 2y + 5y = 0. Then the combined equation of the lines L1 = 0 and L2 = 0 is:
(3x - 2y)2 + 24(3x - 2y) + 143 = 0
(3x - 2y)2 + 8(3x - 2y)+ 33 = 0
(3x - 2y)2 +12(3x-2y) + 13 = 0
(3x - 2y)2 +12(3x-2y) + 1 = 0
The correct option is (A) (3x - 2y)2 + 24(3x - 2y) + 143 = 0
The ratio of the radii of two solid spheres of same mass in 2:3. The ratio of the moments of inertia of the spheres about their diameters is:
If (-c, c) is the set of all values of x for which the expansion is (7 - 5x)-2/3 is valid, then 5c + 7 =
The general solution of the differential equation (x2 + 2)dy +2xydx = ex(x2+2)dx is
If i=√-1 then
\[Arg\left[ \frac{(1+i)^{2025}}{1+i^{2022}} \right] =\]If nCr denotes the number of combinations of n distinct things taken r at a time, then the domain of the function g (x)= (16-x)C(2x-1) is