Let d be the distance between the parallel lines 3x - 2y + 5 = 0 and 3x - 2y + 5 + 2√13 = 0. Let L1 = 3x - 2y + k1 = 0 (k1 > 0) and L2 = 3x - 2y + k2 = 0 (k2 > 0) be two lines that are at the distance of \(\frac{4d}{√13}\) and \(\frac{3d}{√13}\) from the line 3x - 2y + 5y = 0. Then the combined equation of the lines L1 = 0 and L2 = 0 is:
(3x - 2y)2 + 24(3x - 2y) + 143 = 0
(3x - 2y)2 + 8(3x - 2y)+ 33 = 0
(3x - 2y)2 +12(3x-2y) + 13 = 0
(3x - 2y)2 +12(3x-2y) + 1 = 0
The correct option is (A) (3x - 2y)2 + 24(3x - 2y) + 143 = 0
Let \( F \) and \( F' \) be the foci of the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (where \( b<2 \)), and let \( B \) be one end of the minor axis. If the area of the triangle \( FBF' \) is \( \sqrt{3} \) sq. units, then the eccentricity of the ellipse is:
A common tangent to the circle \( x^2 + y^2 = 9 \) and the parabola \( y^2 = 8x \) is
If the equation of the circle passing through the points of intersection of the circles \[ x^2 - 2x + y^2 - 4y - 4 = 0, \quad x^2 + y^2 + 4y - 4 = 0 \] and the point \( (3,3) \) is given by \[ x^2 + y^2 + \alpha x + \beta y + \gamma = 0, \] then \( 3(\alpha + \beta + \gamma) \) is: