Let cos (α + β) = \(\frac {4}{5}\) and sin (α - β) = \(\frac {5}{13}\), where 0 < α, β < \(\frac {π}{4}\) , then tan 2α=?
\(\frac {20}{7}\)
\(\frac {56}{33}\)
\(\frac {19}{12}\)
\(\frac {25}{16}\)
Correct Answer: (2) 56/33
Solution:
We are given:
Step 1: Use compound angle identities:
cos(α + β) = cosα cosβ − sinα sinβ = 4/5
sin(α − β) = sinα cosβ − cosα sinβ = 5/13
Step 2: Triangle visualization
Step 3: Use double angle identity for sin(2α) and cos(2α):
sin(2α) = sin(α + β) cos(α − β) + cos(α + β) sin(α − β)
= (3/5 × 12/13) + (4/5 × 5/13) = 36/65 + 20/65 = 56/65
cos(2α) = cos(α + β) cos(α − β) − sin(α + β) sin(α − β)
= (4/5 × 12/13) − (3/5 × 5/13) = 48/65 − 15/65 = 33/65
Step 4: Calculate tan(2α)
tan(2α) = sin(2α) / cos(2α) = (56/65) / (33/65) = 56/33
The graph shown below depicts: