Let cos (α + β) = \(\frac {4}{5}\) and sin (α - β) = \(\frac {5}{13}\), where 0 < α, β < \(\frac {π}{4}\) , then tan 2α=?
\(\frac {20}{7}\)
\(\frac {56}{33}\)
\(\frac {19}{12}\)
\(\frac {25}{16}\)
tan2α = \(\frac {sin\ 2α}{cos\ 2α}\)
tan2α = \(\frac {sin \ 2α}{1-2sin^2 \ α}\)
sin2α = sin[(α+β)+(α−β)]
sin2α = sin(α+β)cos(α−β) + sin(α−β)cos(α+β)
sin2α = \(\frac {3}{5}\) x \(\frac {12}{13}\) + \(\frac {5}{13}\) x \(\frac {4}{5}\)
sin2α = \(\frac {36}{65}\) + \(\frac {20}{65}\)
cos2α = 1 - 2 sin2 α
cos2α =1-2 x \((\frac {56}{65})^2\)
cos2α =\(\frac {33}{56}\)
tan2α = \(\frac {(56/65)}{(33/65)}\)
tan2α =\(\frac {56}{33}\)
Therefore, the correct option is (B) \(\frac {56}{33}\)
If \( \alpha>\beta>\gamma>0 \), then the expression \[ \cot^{-1} \beta + \left( \frac{1 + \beta^2}{\alpha - \beta} \right) + \cot^{-1} \gamma + \left( \frac{1 + \gamma^2}{\beta - \gamma} \right) + \cot^{-1} \alpha + \left( \frac{1 + \alpha^2}{\gamma - \alpha} \right) \] is equal to: