Given circles: \[ C_1 : (x + 3)^2 + (y + 3)^2 = 3^2 \] Let \( C_1 \) and \( C_2 \) have centres \[ A(-3, -3) \quad \text{and} \quad B(1, 3) \] Distance between centres: \[ AB = \sqrt{(1 + 3)^2 + (3 + 3)^2} = \sqrt{16 + 36} = 2\sqrt{13} \] Radii: \[ r_1 = 3, \quad r_2 = 2\sqrt{13} - 3 \] Let the point of contact be \( P(\alpha, \beta) \). Then using the section formula (internal division): \[ \alpha = \frac{r_1(1) + r_2(-3)}{r_1 + r_2}, \quad \beta = \frac{r_1(3) + r_2(-3)}{r_1 + r_2} \] Substitute the values: \[ \alpha = \frac{3 - 3(2\sqrt{13} - 3)}{2\sqrt{13}}, \quad \beta = \frac{18 - 6\sqrt{13}}{2\sqrt{13}} \] Simplify: \[ \alpha = \frac{3 - 6\sqrt{13} + 9}{2\sqrt{13}}, \quad \beta = \frac{18 - 6\sqrt{13}}{2\sqrt{13}} \] Now, \[ (\beta - \alpha)^2 = \left(\frac{6}{2\sqrt{13}}\right)^2 \] Hence, \[ (\beta - \alpha)^2 = \frac{36}{4 \times 13} = \frac{9}{13} \] Therefore, \[ m + n = 22 \] \[ \boxed{m + n = 22} \]

In the following figure chord MN and chord RS intersect at point D. If RD = 15, DS = 4, MD = 8, find DN by completing the following activity: 
Activity :
\(\therefore\) MD \(\times\) DN = \(\boxed{\phantom{SD}}\) \(\times\) DS \(\dots\) (Theorem of internal division of chords)
\(\therefore\) \(\boxed{\phantom{8}}\) \(\times\) DN = 15 \(\times\) 4
\(\therefore\) DN = \(\frac{\boxed{\phantom{60}}}{8}\)
\(\therefore\) DN = \(\boxed{\phantom{7.5}}\)

If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)