Given circles: \[ C_1 : (x + 3)^2 + (y + 3)^2 = 3^2 \] Let \( C_1 \) and \( C_2 \) have centres \[ A(-3, -3) \quad \text{and} \quad B(1, 3) \] Distance between centres: \[ AB = \sqrt{(1 + 3)^2 + (3 + 3)^2} = \sqrt{16 + 36} = 2\sqrt{13} \] Radii: \[ r_1 = 3, \quad r_2 = 2\sqrt{13} - 3 \] Let the point of contact be \( P(\alpha, \beta) \). Then using the section formula (internal division): \[ \alpha = \frac{r_1(1) + r_2(-3)}{r_1 + r_2}, \quad \beta = \frac{r_1(3) + r_2(-3)}{r_1 + r_2} \] Substitute the values: \[ \alpha = \frac{3 - 3(2\sqrt{13} - 3)}{2\sqrt{13}}, \quad \beta = \frac{18 - 6\sqrt{13}}{2\sqrt{13}} \] Simplify: \[ \alpha = \frac{3 - 6\sqrt{13} + 9}{2\sqrt{13}}, \quad \beta = \frac{18 - 6\sqrt{13}}{2\sqrt{13}} \] Now, \[ (\beta - \alpha)^2 = \left(\frac{6}{2\sqrt{13}}\right)^2 \] Hence, \[ (\beta - \alpha)^2 = \frac{36}{4 \times 13} = \frac{9}{13} \] Therefore, \[ m + n = 22 \] \[ \boxed{m + n = 22} \]

For a gas P-V curve is given as shown in the diagram. Curve path follows equations \((V - 2)^2 = 4aP\). Find work done by gas in given cyclic process. 
How many tripeptides are possible when following three amino acids make tripeptide? (No amino acid should repeat twice)
(A) Glycine
(B) Alanine
(C) Valine