Question:

Let α,β be the roots of the quadratic equation  x2+√6x+3=0. Then  \(\frac{α^23+β^23 + α ^14 + β ^14 }{α ^15 + β ^15 + α 160 + β ^{10}}\)  is equal to

Show Hint

When dealing with complex roots of quadratic equations, converting to polar form can be beneficial for simplification. Review trigonometric identities for eval uating cosine and sine of various angles. Pay careful attention to signs and pow ers when simplifying.

Updated On: Jan 14, 2025
  • 9
  • 12
  • 81
  • 729
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given: \[ \alpha, \beta = \frac{-\sqrt{6} \pm \sqrt{6 - 12}}{2}. \]

We can rewrite this as: \[ \alpha, \beta = \sqrt{3} e^{\pm 3\pi i / 4}. \]

Required Expression: \[ \left(\sqrt{3}\right)^{23} 2\cos\left(69\pi / 4\right) = \frac{-\sqrt{6} \pm \sqrt{6} i}{2} + \left(\sqrt{3}\right)^{14} 2\cos\left(42\pi / 4\right). \] 
Simplifying further: \[ \left(\sqrt{3}\right)^{15} 2\cos\left(45\pi / 4\right). \]

Additionally, we know: \[ \left(\sqrt{3}\right)^{10} 2\cos\left(30\pi / 4\right) \sqrt{3}^{8} = 81. \]

Was this answer helpful?
2
3