When dealing with complex roots of quadratic equations, converting to polar form can be beneficial for simplification. Review trigonometric identities for eval uating cosine and sine of various angles. Pay careful attention to signs and pow ers when simplifying.
Given: \[ \alpha, \beta = \frac{-\sqrt{6} \pm \sqrt{6 - 12}}{2}. \]
We can rewrite this as: \[ \alpha, \beta = \sqrt{3} e^{\pm 3\pi i / 4}. \]
Required Expression: \[ \left(\sqrt{3}\right)^{23} 2\cos\left(69\pi / 4\right) = \frac{-\sqrt{6} \pm \sqrt{6} i}{2} + \left(\sqrt{3}\right)^{14} 2\cos\left(42\pi / 4\right). \]
Simplifying further: \[ \left(\sqrt{3}\right)^{15} 2\cos\left(45\pi / 4\right). \]
Additionally, we know: \[ \left(\sqrt{3}\right)^{10} 2\cos\left(30\pi / 4\right) \sqrt{3}^{8} = 81. \]
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 