When dealing with complex roots of quadratic equations, converting to polar form can be beneficial for simplification. Review trigonometric identities for eval uating cosine and sine of various angles. Pay careful attention to signs and pow ers when simplifying.
Given: \[ \alpha, \beta = \frac{-\sqrt{6} \pm \sqrt{6 - 12}}{2}. \]
We can rewrite this as: \[ \alpha, \beta = \sqrt{3} e^{\pm 3\pi i / 4}. \]
Required Expression: \[ \left(\sqrt{3}\right)^{23} 2\cos\left(69\pi / 4\right) = \frac{-\sqrt{6} \pm \sqrt{6} i}{2} + \left(\sqrt{3}\right)^{14} 2\cos\left(42\pi / 4\right). \]
Simplifying further: \[ \left(\sqrt{3}\right)^{15} 2\cos\left(45\pi / 4\right). \]
Additionally, we know: \[ \left(\sqrt{3}\right)^{10} 2\cos\left(30\pi / 4\right) \sqrt{3}^{8} = 81. \]
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: