To solve this problem, we need to determine whether the expressions \( \alpha \) and \( \beta \) belong to the set of natural numbers \( \mathbb{N} \).
Given:
\(\alpha = \frac{(4!)^6}{(4!)^6 \cdot 6!} = \frac{24!}{(4!)^6 \cdot 6!}, \quad \beta = \frac{(5!)^{24}}{(5!)^{24} \cdot 24!} = \frac{120!}{(5!)^{24} \cdot 24!}.\)
Analyzing \(\alpha\):
Consider dividing 24 distinct objects into 6 groups of 4 objects each. The number of ways to form these groups is given by:
\(\alpha = \frac{24!}{(4!)^6 \cdot 6!}.\)
Since this is a valid combinatorial expression representing the number of ways to arrange groups, \(\alpha \in \mathbb{N}\) (i.e., it is a natural number).
Analyzing \(\beta\):
Consider dividing 120 distinct objects into 24 groups of 5 objects each. The number of ways to form these groups is given by:
\(\beta = \frac{120!}{(5!)^{24} \cdot 24!}.\)
This is also a valid combinatorial expression, implying that \(\beta \in \mathbb{N}\).
Conclusion:
Therefore, both \(\alpha\) and \(\beta\) are natural numbers.
The Correct answer is: \( \alpha \in \mathbb{N} \) and \( \beta \in \mathbb{N} \)
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
