Given the differential equation:
\[ f'(x) = \alpha f(x) + 3 \]
This is a first-order linear differential equation. We can solve it using an integrating factor (IF).
The integrating factor is given by:
\[ IF = e^{\int \alpha dx} = e^{\alpha x} \]
Multiplying the differential equation by the integrating factor:
\[ e^{\alpha x} f'(x) = \alpha e^{\alpha x} f(x) + 3e^{\alpha x} \]
This simplifies to:
\[ \frac{d}{dx} \left(e^{\alpha x} f(x)\right) = 3e^{\alpha x} \]
Integrating both sides with respect to \( x \):
\[ e^{\alpha x} f(x) = \int 3e^{\alpha x} dx = \frac{3e^{\alpha x}}{\alpha} + C \]
Thus, the general solution is:
\[ f(x) = \frac{3}{\alpha} + Ce^{-\alpha x} \]
Using the initial condition \( f(0) = 2 \):
\[ 2 = \frac{3}{\alpha} + C \] \[ C = 2 - \frac{3}{\alpha} \]
Given that \( \lim_{x \to \infty} f(x) = 1 \):
\[ \lim_{x \to \infty} \left(\frac{3}{\alpha} + \left(2 - \frac{3}{\alpha}\right)e^{-\alpha x}\right) = 1 \]
Since \( e^{-\alpha x} \to 0 \) as \( x \to \infty \), we have:
\[ \frac{3}{\alpha} = 1 \implies \alpha = 3 \]
Substituting \( \alpha = 3 \) back into the solution:
\[ f(x) = 1 + (2 - 1)e^{-3x} = 1 + e^{-3x} \]
Now, we need to find \( f(-\log_2 2) \):
\[ f(-\log_2 2) = 1 + e^{-3(-\log_2 2)} = 1 + e^{3\log_2 2} = 1 + (2^3) = 1 + 8 = 9 \]
Conclusion: \( f(-\log_2 2) = 9 \).