The given quadratic equation is: \[ px^2 + qx - r = 0 \quad \text{with roots } \alpha \text{ and } \beta. \]
The coefficients are given as: \[ p = A, \quad q = AR, \quad r = AR^2. \]
Substituting these values into the equation: \[ Ax^2 + ARx - AR^2 = 0. \]
Dividing throughout by $A$, we get: \[ x^2 + Rx - R^2 = 0. \]
From the roots of the quadratic equation, we know: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{3}{4}. \]
Using the relationship between the roots and the coefficients of a quadratic equation: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}. \]
Substituting the values for $\alpha + \beta = -R$ and $\alpha \beta = -R^2$, we get: \[ \frac{\alpha + \beta}{\alpha \beta} = \frac{-R}{-R^2} = \frac{R}{R^2} = \frac{1}{R}. \]
Equating this to the given value: \[ \frac{1}{R} = \frac{3}{4}. \]
From this, we find: \[ R = \frac{4}{3}. \]
Now, we calculate $(\alpha - \beta)^2$ using the formula: \[ (\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta. \]
Substituting the known values: \[ \alpha + \beta = -R \quad \text{and} \quad \alpha \beta = -R^2, \]
we get: \[ (\alpha - \beta)^2 = (-R)^2 - 4(-R^2). \]
Simplify this expression: \[ (\alpha - \beta)^2 = R^2 - 4(-R^2) = R^2 + 4R^2 = 5R^2. \]
Substituting $R = \frac{4}{3}$ into the equation: \[ (\alpha - \beta)^2 = 5 \left(\frac{4}{3}\right)^2 = 5 \cdot \frac{16}{9} = \frac{80}{9}. \]
Thus, the final answer is: \[ (\alpha - \beta)^2 = \frac{80}{9}. \]
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.