Given Polynomial:
\[
2x^2 + 7x + 5 = 0
\]
Step 1: Find the zeroes using quadratic formula
For quadratic \(ax^2 + bx + c = 0\), zeroes are:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Here, \(a=2\), \(b=7\), \(c=5\).
Calculate discriminant:
\[
\Delta = b^2 - 4ac = 7^2 - 4 \times 2 \times 5 = 49 - 40 = 9
\]
\[
x = \frac{-7 \pm \sqrt{9}}{2 \times 2} = \frac{-7 \pm 3}{4}
\]
Zeroes:
\[
x_1 = \frac{-7 + 3}{4} = \frac{-4}{4} = -1
\]
\[
x_2 = \frac{-7 - 3}{4} = \frac{-10}{4} = -\frac{5}{2}
\]
Step 2: Verify relationship between zeroes and coefficients
Sum of zeroes:
\[
x_1 + x_2 = -1 - \frac{5}{2} = -\frac{7}{2}
\]
According to formula:
\[
\text{Sum} = -\frac{b}{a} = -\frac{7}{2}
\]
Product of zeroes:
\[
x_1 \times x_2 = -1 \times \left(-\frac{5}{2}\right) = \frac{5}{2}
\]
According to formula:
\[
\text{Product} = \frac{c}{a} = \frac{5}{2}
\]
Final Answer:
Zeroes are \(-1\) and \(-\frac{5}{2}\).
Sum of zeroes \(= -\frac{7}{2}\) matches \(-\frac{b}{a}\).
Product of zeroes \(= \frac{5}{2}\) matches \(\frac{c}{a}\).