Let $\alpha>0$, be the smallest number such that the expansion of $\left(x^{\frac{2}{3}}+\frac{2}{x^3}\right)^{30}$ has a term $\beta x^{-a}, \beta \in N$.
Then \(α\) is equal to _________.
The general term of the given expansion is:
We need to express this in the form \( \beta x^{-\alpha} \). The exponent of \( x \) in the general term is calculated as:
For the term to be in the form \( x^{-\alpha} \), we set:
Since \( \alpha > 0 \), we solve for \( r \):
We substitute \( r = 6 \) in the general term:
We observe that \( \beta = \binom{30}{6} \times 2^6 \) is a natural number.
From the exponent in \( x^{-2} \), we conclude:
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is
