We are given the geometry of the trapezium and need to calculate its area.
Step 1: First, determine the coordinates of the vertices of the trapezium using the equation \( y^2 = 4x \).
Step 2: Calculate the length of diagonal AC by using the distance formula between the points.
Step 3: Use the area formula for a trapezium, which involves calculating the parallel sides' lengths and height, to find the area.
Final Conclusion: The area of ABCD is \( \frac{75}{8} \), which is Option 2.
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 