We are given the geometry of the trapezium and need to calculate its area.
Step 1: First, determine the coordinates of the vertices of the trapezium using the equation \( y^2 = 4x \).
Step 2: Calculate the length of diagonal AC by using the distance formula between the points.
Step 3: Use the area formula for a trapezium, which involves calculating the parallel sides' lengths and height, to find the area.
Final Conclusion: The area of ABCD is \( \frac{75}{8} \), which is Option 2.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 