Let ABCD be a quadrilateral. If E and F are the mid points of the diagonals AC and BD respectively and $ (\vec{AB}-\vec{BC})+(\vec{AD}-\vec{DC})=k \vec{FE} $, then k is equal to

Complete the following activity to prove that the sum of squares of diagonals of a rhombus is equal to the sum of the squares of the sides. 
Given: PQRS is a rhombus. Diagonals PR and SQ intersect each other at point T.
To prove: PS\(^2\) + SR\(^2\) + QR\(^2\) + PQ\(^2\) = PR\(^2\) + QS\(^2\)
Activity: Diagonals of a rhombus bisect each other.
In \(\triangle\)PQS, PT is the median and in \(\triangle\)QRS, RT is the median.
\(\therefore\) by Apollonius theorem,
\[\begin{aligned} PQ^2 + PS^2 &= \boxed{\phantom{X}} + 2QT^2 \quad \dots \text{(I)} \\ QR^2 + SR^2 &= \boxed{\phantom{X}} + 2QT^2 \quad \dots \text{(II)} \\ \text{Adding (I) and (II),} \quad PQ^2 + PS^2 + QR^2 + SR^2 &= 2(PT^2 + \boxed{\phantom{X}}) + 4QT^2 \\ &= 2(PT^2 + \boxed{\phantom{X}}) + 4QT^2 \quad (\text{RT = PT}) \\ &= 4PT^2 + 4QT^2 \\ &= (\boxed{\phantom{X}})^2 + (2QT)^2 \\ \therefore \quad PQ^2 + PS^2 + QR^2 + SR^2 &= PR^2 + \boxed{\phantom{X}} \\ \end{aligned}\]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
