Let ABCD be a quadrilateral. If E and F are the mid points of the diagonals AC and BD respectively and $ (\vec{AB}-\vec{BC})+(\vec{AD}-\vec{DC})=k \vec{FE} $, then k is equal to

Complete the following activity to prove that the sum of squares of diagonals of a rhombus is equal to the sum of the squares of the sides. 
Given: PQRS is a rhombus. Diagonals PR and SQ intersect each other at point T.
To prove: PS\(^2\) + SR\(^2\) + QR\(^2\) + PQ\(^2\) = PR\(^2\) + QS\(^2\)
Activity: Diagonals of a rhombus bisect each other.
In \(\triangle\)PQS, PT is the median and in \(\triangle\)QRS, RT is the median.
\(\therefore\) by Apollonius theorem,
\[\begin{aligned} PQ^2 + PS^2 &= \boxed{\phantom{X}} + 2QT^2 \quad \dots \text{(I)} \\ QR^2 + SR^2 &= \boxed{\phantom{X}} + 2QT^2 \quad \dots \text{(II)} \\ \text{Adding (I) and (II),} \quad PQ^2 + PS^2 + QR^2 + SR^2 &= 2(PT^2 + \boxed{\phantom{X}}) + 4QT^2 \\ &= 2(PT^2 + \boxed{\phantom{X}}) + 4QT^2 \quad (\text{RT = PT}) \\ &= 4PT^2 + 4QT^2 \\ &= (\boxed{\phantom{X}})^2 + (2QT)^2 \\ \therefore \quad PQ^2 + PS^2 + QR^2 + SR^2 &= PR^2 + \boxed{\phantom{X}} \\ \end{aligned}\]
The most stable carbocation from the following is:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to: